ACCC1380's picture
Upload lora-scripts/sd-scripts/tools/merge_models.py with huggingface_hub
07b7d37 verified
import argparse
import os
import torch
from safetensors import safe_open
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
def is_unet_key(key):
# VAE or TextEncoder, the last one is for SDXL
return not ("first_stage_model" in key or "cond_stage_model" in key or "conditioner." in key)
TEXT_ENCODER_KEY_REPLACEMENTS = [
("cond_stage_model.transformer.embeddings.", "cond_stage_model.transformer.text_model.embeddings."),
("cond_stage_model.transformer.encoder.", "cond_stage_model.transformer.text_model.encoder."),
("cond_stage_model.transformer.final_layer_norm.", "cond_stage_model.transformer.text_model.final_layer_norm."),
]
# support for models with different text encoder keys
def replace_text_encoder_key(key):
for rep_from, rep_to in TEXT_ENCODER_KEY_REPLACEMENTS:
if key.startswith(rep_from):
return True, rep_to + key[len(rep_from) :]
return False, key
def merge(args):
if args.precision == "fp16":
dtype = torch.float16
elif args.precision == "bf16":
dtype = torch.bfloat16
else:
dtype = torch.float
if args.saving_precision == "fp16":
save_dtype = torch.float16
elif args.saving_precision == "bf16":
save_dtype = torch.bfloat16
else:
save_dtype = torch.float
# check if all models are safetensors
for model in args.models:
if not model.endswith("safetensors"):
logger.info(f"Model {model} is not a safetensors model")
exit()
if not os.path.isfile(model):
logger.info(f"Model {model} does not exist")
exit()
assert args.ratios is None or len(args.models) == len(args.ratios), "ratios must be the same length as models"
# load and merge
ratio = 1.0 / len(args.models) # default
supplementary_key_ratios = {} # [key] = ratio, for keys not in all models, add later
merged_sd = None
first_model_keys = set() # check missing keys in other models
for i, model in enumerate(args.models):
if args.ratios is not None:
ratio = args.ratios[i]
if merged_sd is None:
# load first model
logger.info(f"Loading model {model}, ratio = {ratio}...")
merged_sd = {}
with safe_open(model, framework="pt", device=args.device) as f:
for key in tqdm(f.keys()):
value = f.get_tensor(key)
_, key = replace_text_encoder_key(key)
first_model_keys.add(key)
if not is_unet_key(key) and args.unet_only:
supplementary_key_ratios[key] = 1.0 # use first model's value for VAE or TextEncoder
continue
value = ratio * value.to(dtype) # first model's value * ratio
merged_sd[key] = value
logger.info(f"Model has {len(merged_sd)} keys " + ("(UNet only)" if args.unet_only else ""))
continue
# load other models
logger.info(f"Loading model {model}, ratio = {ratio}...")
with safe_open(model, framework="pt", device=args.device) as f:
model_keys = f.keys()
for key in tqdm(model_keys):
_, new_key = replace_text_encoder_key(key)
if new_key not in merged_sd:
if args.show_skipped and new_key not in first_model_keys:
logger.info(f"Skip: {new_key}")
continue
value = f.get_tensor(key)
merged_sd[new_key] = merged_sd[new_key] + ratio * value.to(dtype)
# enumerate keys not in this model
model_keys = set(model_keys)
for key in merged_sd.keys():
if key in model_keys:
continue
logger.warning(f"Key {key} not in model {model}, use first model's value")
if key in supplementary_key_ratios:
supplementary_key_ratios[key] += ratio
else:
supplementary_key_ratios[key] = ratio
# add supplementary keys' value (including VAE and TextEncoder)
if len(supplementary_key_ratios) > 0:
logger.info("add first model's value")
with safe_open(args.models[0], framework="pt", device=args.device) as f:
for key in tqdm(f.keys()):
_, new_key = replace_text_encoder_key(key)
if new_key not in supplementary_key_ratios:
continue
if is_unet_key(new_key): # not VAE or TextEncoder
logger.warning(f"Key {new_key} not in all models, ratio = {supplementary_key_ratios[new_key]}")
value = f.get_tensor(key) # original key
if new_key not in merged_sd:
merged_sd[new_key] = supplementary_key_ratios[new_key] * value.to(dtype)
else:
merged_sd[new_key] = merged_sd[new_key] + supplementary_key_ratios[new_key] * value.to(dtype)
# save
output_file = args.output
if not output_file.endswith(".safetensors"):
output_file = output_file + ".safetensors"
logger.info(f"Saving to {output_file}...")
# convert to save_dtype
for k in merged_sd.keys():
merged_sd[k] = merged_sd[k].to(save_dtype)
save_file(merged_sd, output_file)
logger.info("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Merge models")
parser.add_argument("--models", nargs="+", type=str, help="Models to merge")
parser.add_argument("--output", type=str, help="Output model")
parser.add_argument("--ratios", nargs="+", type=float, help="Ratios of models, default is equal, total = 1.0")
parser.add_argument("--unet_only", action="store_true", help="Only merge unet")
parser.add_argument("--device", type=str, default="cpu", help="Device to use, default is cpu")
parser.add_argument(
"--precision", type=str, default="float", choices=["float", "fp16", "bf16"], help="Calculation precision, default is float"
)
parser.add_argument(
"--saving_precision",
type=str,
default="float",
choices=["float", "fp16", "bf16"],
help="Saving precision, default is float",
)
parser.add_argument("--show_skipped", action="store_true", help="Show skipped keys (keys not in first model)")
args = parser.parse_args()
merge(args)