{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "# Train data path | 设置训练用模型、图片\n", "pretrained_model = \"./sd-models/model.ckpt\" # base model path | 底模路径\n", "train_data_dir = \"./train/aki\" # train dataset path | 训练数据集路径\n", "\n", "# Train related params | 训练相关参数\n", "resolution = \"512,512\" # image resolution w,h. 图片分辨率,宽,高。支持非正方形,但必须是 64 倍数。\n", "batch_size = 1 # batch size\n", "max_train_epoches = 10 # max train epoches | 最大训练 epoch\n", "save_every_n_epochs = 2 # save every n epochs | 每 N 个 epoch 保存一次\n", "network_dim = 32 # network dim | 常用 4~128,不是越大越好\n", "network_alpha= 32 # network alpha | 常用与 network_dim 相同的值或者采用较小的值,如 network_dim的一半 防止下溢。默认值为 1,使用较小的 alpha 需要提升学习率。\n", "clip_skip = 2 # clip skip | 玄学 一般用 2\n", "train_unet_only = 0 # train U-Net only | 仅训练 U-Net,开启这个会牺牲效果大幅减少显存使用。6G显存可以开启\n", "train_text_encoder_only = 0 # train Text Encoder only | 仅训练 文本编码器\n", "\n", "# Learning rate | 学习率\n", "lr = \"1e-4\"\n", "unet_lr = \"1e-4\"\n", "text_encoder_lr = \"1e-5\"\n", "lr_scheduler = \"cosine_with_restarts\" # \"linear\", \"cosine\", \"cosine_with_restarts\", \"polynomial\", \"constant\", \"constant_with_warmup\"\n", "\n", "# Output settings | 输出设置\n", "output_name = \"aki\" # output model name | 模型保存名称\n", "save_model_as = \"safetensors\" # model save ext | 模型保存格式 ckpt, pt, safetensors" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "!accelerate launch --num_cpu_threads_per_process=8 \"./scripts/train_network.py\" \\\n", " --enable_bucket \\\n", " --pretrained_model_name_or_path=$pretrained_model \\\n", " --train_data_dir=$train_data_dir \\\n", " --output_dir=\"./output\" \\\n", " --logging_dir=\"./logs\" \\\n", " --resolution=$resolution \\\n", " --network_module=networks.lora \\\n", " --max_train_epochs=$max_train_epoches \\\n", " --learning_rate=$lr \\\n", " --unet_lr=$unet_lr \\\n", " --text_encoder_lr=$text_encoder_lr \\\n", " --network_dim=$network_dim \\\n", " --network_alpha=$network_alpha \\\n", " --output_name=$output_name \\\n", " --lr_scheduler=$lr_scheduler \\\n", " --train_batch_size=$batch_size \\\n", " --save_every_n_epochs=$save_every_n_epochs \\\n", " --mixed_precision=\"fp16\" \\\n", " --save_precision=\"fp16\" \\\n", " --seed=\"1337\" \\\n", " --cache_latents \\\n", " --clip_skip=$clip_skip \\\n", " --prior_loss_weight=1 \\\n", " --max_token_length=225 \\\n", " --caption_extension=\".txt\" \\\n", " --save_model_as=$save_model_as \\\n", " --xformers --shuffle_caption --use_8bit_adam" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "name": "python", "version": "3.10.7 (tags/v3.10.7:6cc6b13, Sep 5 2022, 14:08:36) [MSC v.1933 64 bit (AMD64)]" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "675b13e958f0d0236d13cdfe08a1df3882cae564fa23a2e7e5eb1f2c6c632b02" } } }, "nbformat": 4, "nbformat_minor": 2 }