import os import torch import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import from functools import cache # pylint: disable=protected-access, missing-function-docstring, line-too-long # ARC GPUs can't allocate more than 4GB to a single block so we slice the attetion layers sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 4)) attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4)) # Find something divisible with the input_tokens @cache def find_slice_size(slice_size, slice_block_size): while (slice_size * slice_block_size) > attention_slice_rate: slice_size = slice_size // 2 if slice_size <= 1: slice_size = 1 break return slice_size # Find slice sizes for SDPA @cache def find_sdpa_slice_sizes(query_shape, query_element_size): if len(query_shape) == 3: batch_size_attention, query_tokens, shape_three = query_shape shape_four = 1 else: batch_size_attention, query_tokens, shape_three, shape_four = query_shape slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size block_size = batch_size_attention * slice_block_size split_slice_size = batch_size_attention split_2_slice_size = query_tokens split_3_slice_size = shape_three do_split = False do_split_2 = False do_split_3 = False if block_size > sdpa_slice_trigger_rate: do_split = True split_slice_size = find_slice_size(split_slice_size, slice_block_size) if split_slice_size * slice_block_size > attention_slice_rate: slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size do_split_2 = True split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) if split_2_slice_size * slice_2_block_size > attention_slice_rate: slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size do_split_3 = True split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size # Find slice sizes for BMM @cache def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape): batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2] slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size block_size = batch_size_attention * slice_block_size split_slice_size = batch_size_attention split_2_slice_size = input_tokens split_3_slice_size = mat2_atten_shape do_split = False do_split_2 = False do_split_3 = False if block_size > attention_slice_rate: do_split = True split_slice_size = find_slice_size(split_slice_size, slice_block_size) if split_slice_size * slice_block_size > attention_slice_rate: slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size do_split_2 = True split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size) if split_2_slice_size * slice_2_block_size > attention_slice_rate: slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size do_split_3 = True split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size) return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size original_torch_bmm = torch.bmm def torch_bmm_32_bit(input, mat2, *, out=None): if input.device.type != "xpu": return original_torch_bmm(input, mat2, out=out) do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape) # Slice BMM if do_split: batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2] hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype) for i in range(batch_size_attention // split_slice_size): start_idx = i * split_slice_size end_idx = (i + 1) * split_slice_size if do_split_2: for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name start_idx_2 = i2 * split_2_slice_size end_idx_2 = (i2 + 1) * split_2_slice_size if do_split_3: for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name start_idx_3 = i3 * split_3_slice_size end_idx_3 = (i3 + 1) * split_3_slice_size hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm( input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], out=out ) else: hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm( input[start_idx:end_idx, start_idx_2:end_idx_2], mat2[start_idx:end_idx, start_idx_2:end_idx_2], out=out ) else: hidden_states[start_idx:end_idx] = original_torch_bmm( input[start_idx:end_idx], mat2[start_idx:end_idx], out=out ) torch.xpu.synchronize(input.device) else: return original_torch_bmm(input, mat2, out=out) return hidden_states original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs): if query.device.type != "xpu": return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size()) # Slice SDPA if do_split: batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2] hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) for i in range(batch_size_attention // split_slice_size): start_idx = i * split_slice_size end_idx = (i + 1) * split_slice_size if do_split_2: for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name start_idx_2 = i2 * split_2_slice_size end_idx_2 = (i2 + 1) * split_2_slice_size if do_split_3: for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name start_idx_3 = i3 * split_3_slice_size end_idx_3 = (i3 + 1) * split_3_slice_size hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention( query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3], attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs ) else: hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention( query[start_idx:end_idx, start_idx_2:end_idx_2], key[start_idx:end_idx, start_idx_2:end_idx_2], value[start_idx:end_idx, start_idx_2:end_idx_2], attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs ) else: hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention( query[start_idx:end_idx], key[start_idx:end_idx], value[start_idx:end_idx], attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs ) torch.xpu.synchronize(query.device) else: return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs) return hidden_states