# LoRA interrogate script by @bdsqlsz $v2 = 0 # load Stable Diffusion v2.x model / Stable Diffusion 2.x模型读取 $sd_model = "./sd-models/sd_model.safetensors" # Stable Diffusion model to load: ckpt or safetensors file | 读取的基础SD模型, 保存格式 cpkt 或 safetensors $model = "./output/LoRA.safetensors" # LoRA model to interrogate: ckpt or safetensors file | 需要调查关键字的LORA模型, 保存格式 cpkt 或 safetensors $batch_size = 64 # batch size for processing with Text Encoder | 使用 Text Encoder 处理时的批量大小,默认16,推荐64/128 $clip_skip = 1 # use output of nth layer from back of text encoder (n>=1) | 使用文本编码器倒数第 n 层的输出,n 可以是大于等于 1 的整数 # Activate python venv .\venv\Scripts\activate $Env:HF_HOME = "huggingface" $ext_args = [System.Collections.ArrayList]::new() if ($v2) { [void]$ext_args.Add("--v2") } # run interrogate accelerate launch --num_cpu_threads_per_process=8 "./scripts/networks/lora_interrogator.py" ` --sd_model=$sd_model ` --model=$model ` --batch_size=$batch_size ` --clip_skip=$clip_skip ` $ext_args Write-Output "Interrogate finished" Read-Host | Out-Null ;