import re from collections import Counter import pandas as pd from datasketch import MinHash, MinHashLSH from lingua import Language, LanguageDetectorBuilder # Initialize variables for statistics word_count = Counter() longest_sentence = "" shortest_sentence = None total_sentences = 0 all_sentences = [] def tokenize(text): """ Clean and split text into words. """ # Remove punctuation and split by whitespace words = re.findall(r'\b\w+\b', text.lower()) return words # Open the file and process line by line with open('tunisian_data.txt', 'r') as file: for line in file: # Strip leading/trailing whitespace line = line.strip() # Skip empty lines if not line: continue # Split the line into sentences (using '.', '!', or '?' as delimiters) sentences = re.split(r'[.!?]', line) for sentence in sentences: sentence = sentence.strip() if sentence: all_sentences.append(sentence) total_sentences += 1 # Update longest and shortest sentences if len(sentence) > len(longest_sentence): longest_sentence = sentence if shortest_sentence is None or len(sentence) < len(shortest_sentence): shortest_sentence = sentence # Tokenize and count words words = tokenize(sentence) word_count.update(words) # Get the most common words most_common_words = word_count.most_common(10) print(f"Most Common Words: {most_common_words}") def get_minhash(text, num_perm=128): """ Generate a MinHash for a given text. """ tokens = set(text.split()) m = MinHash(num_perm=num_perm) for token in tokens: m.update(token.encode('utf8')) return m def minhash_deduplication(docs, threshold=0.8, num_perm=128): """ Remove near-duplicate documents using MinHash LSH. """ lsh = MinHashLSH(threshold=threshold, num_perm=num_perm) unique_docs = [] for i, doc in enumerate(docs): m = get_minhash(doc, num_perm=num_perm) if not lsh.query(m): # Check if the document is a near duplicate lsh.insert(i, m) unique_docs.append(doc) return unique_docs unique_docs = minhash_deduplication(all_sentences, threshold=0.8) print(f"Number of unique documents: {len(unique_docs)}") # Language detection detector = LanguageDetectorBuilder.from_languages(*Language.all()).build() labels = [] cleaned_text = [] for s in unique_docs: l = detector.detect_language_of(s) if not l: print(f"Could not detect language for sentence: {s}") else: labels.append(l.name) cleaned_text.append(s) # Create a DataFrame with the cleaned text df = pd.DataFrame({'text': cleaned_text})