aapot commited on
Commit
f17ab16
1 Parent(s): 1d5cd2b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -18
README.md CHANGED
@@ -63,7 +63,7 @@ This project was inspired by https://huggingface.co/datasets/alexandrainst/scand
63
 
64
  ### Filtering disclaimer. Toxicity and bias
65
 
66
- The dataset is provided as is and high likely includes toxic, biased etch. material. You should carefully curate this dataset for your needs.
67
  We evaluated subreddits with over 500 messages and decided to provide a list that based on our fast analysis should be filtered out:
68
 
69
  [FinlandOnlyfans,
@@ -100,16 +100,23 @@ The dataset is available in Finnish
100
  An example from the dataset looks as follows.
101
  ```
102
  {
103
- 'subreddit': 'arkisuomi',
104
- 'created_utc': 1671152007,
105
- 'score': 1,
106
- 'body': 'oatlyn iKaffe on maitoa parempaa kahvissa, en jois pelkästään kuitenkaan',
107
- 'predicted_language': '__label__fi',
108
- 'probability': 0.9783772230148317,
109
- 'year': 2022.0,
110
- 'day': 16.0,
111
- 'month': 12.0,
112
- 'time': '00:53:27'}
 
 
 
 
 
 
 
113
  ```
114
 
115
  ### Data Fields
@@ -117,13 +124,22 @@ An example from the dataset looks as follows.
117
  The data fields are the same among all splits.
118
 
119
  - `subreddit`: `string`
120
- - `created_utc: `int`
121
- - `predicted_language`: a `string`
122
- - `probability`: a `float64`
123
- - 'year': `datetime`
124
- - 'day': `datetime`
125
- - 'month': `datetime`
126
- - 'time': `datetime` }
 
 
 
 
 
 
 
 
 
127
 
128
  ### Language Distribution
129
  - fi: 4,476,667
 
63
 
64
  ### Filtering disclaimer. Toxicity and bias
65
 
66
+ The dataset is provided as is and high likely includes toxic, biased etch. material. You should carefully curate this dataset for your needs. To label toxic messages, we used Finnish toxicity classifier [TurkuNLP/bert-large-finnish-cased-toxicity](https://huggingface.co/TurkuNLP/bert-large-finnish-cased-toxicity) released by TurkuNLP. This dataset includes 6 different toxicity labels with their predicted scores for each message. You can use those labels and scores to filter out toxic messages.
67
  We evaluated subreddits with over 500 messages and decided to provide a list that based on our fast analysis should be filtered out:
68
 
69
  [FinlandOnlyfans,
 
100
  An example from the dataset looks as follows.
101
  ```
102
  {
103
+ "subreddit": "arkisuomi",
104
+ "created_utc": 1671152007,
105
+ "score": 1,
106
+ "body": "oatlyn iKaffe on maitoa parempaa kahvissa, en jois pelkästään kuitenkaan",
107
+ "predicted_language": "__label__fi",
108
+ "probability": 0.9783772230148317,
109
+ "year": 2022.0,
110
+ "day": 16.0,
111
+ "month": 12.0,
112
+ "time": "00:53:27",
113
+ "label_identity_attack": 0.00018978118896484375,
114
+ "label_insult": 0.00058746337890625,
115
+ "label_obscene": 0.00142669677734375,
116
+ "label_severe_toxicity": 6.723403930664062e-05,
117
+ "label_threat": 0.0004100799560546875,
118
+ "label_toxicity": 0.01025390625
119
+ }
120
  ```
121
 
122
  ### Data Fields
 
124
  The data fields are the same among all splits.
125
 
126
  - `subreddit`: `string`
127
+ - `created_utc: `int64`
128
+ - `score`: `int64`
129
+ - `body`: `string`
130
+ - `predicted_language`: `string`
131
+ - `probability`: `float64`
132
+ - `year`: `float64`
133
+ - `day`: `float64`
134
+ - `month`: `float64`
135
+ - `time`: `string`
136
+ - `label_identity_attack`: `float64`
137
+ - `label_insult`: `float64`
138
+ - `label_obscene`: `float64`
139
+ - `label_severe_toxicity`: `float64`
140
+ - `label_threat`: `float64`
141
+ - `label_toxicity`: `float64`
142
+
143
 
144
  ### Language Distribution
145
  - fi: 4,476,667