Datasets:

ArXiv:
License:
the-vault-inline / the-vault-inline.py
NamCyan's picture
fix the number of Rust shards
1d090ca
import os
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
# Meta infomation
_REPO_NAME = 'Fsoft-AIC/the-vault-inline'
_DESCRIPTION = """The Vault is a multilingual code-text dataset with over 34 million pairs covering 10 popular programming languages.
It is the largest corpus containing parallel code-text data. By building upon The Stack, a massive raw code sample collection,
the Vault offers a comprehensive and clean resource for advancing research in code understanding and generation. It provides a
high-quality dataset that includes code-text pairs at multiple levels, such as class and inline-level, in addition to the function level.
The Vault can serve many purposes at multiple levels."""
_HOMEPAGE = "https://huggingface.co/Fsoft-AIC"
_LICENSE = "MIT License"
_CITATION = """
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
"""
################################################################################################
# Config metadata
_LANG_TO_TEXT = {
"python": "python",
"c": "c",
"c#": "c_sharp",
"c++": "cpp",
"go": "go",
"java": "java",
"javascript": "javascript",
"php": "php",
"ruby": "ruby",
"rust": "rust",
}
_LANG_CONFIGS = ["all"] + list(_LANG_TO_TEXT.keys())
_TEXT_TO_LANG = {}
for lang in _LANG_TO_TEXT:
_TEXT_TO_LANG[_LANG_TO_TEXT[lang]] = lang
num_shard_split = {
"ruby": 3,
"c": 29,
"c_sharp": 25,
"cpp": 39,
"go": 15,
"java": 75,
"javascript": 6,
"php": 21,
"python": 48,
"rust": 10,
}
################################################################################################
class TheVaultFunctionConfig(datasets.BuilderConfig):
"""BuilderConfig for The Vault dataset."""
def __init__(self, *args, languages=["all"], **kwargs):
"""BuilderConfig for the The Vault dataset.
Args:
languages (:obj:`List[str]`): List of languages to load.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(
*args,
name= "+".join([_LANG_TO_TEXT[lang] if lang in _LANG_TO_TEXT else lang for lang in languages]),
**kwargs,
)
languages = set([lang.lower() for lang in languages])
assert all([language in _LANG_CONFIGS for language in languages]), f"languages {languages} contains language not in {_LANG_CONFIGS}."
if "all" in languages:
assert len(languages)==1, f"Passed 'all' together with other languages. {languages}"
else:
languages = [_LANG_TO_TEXT[lang] for lang in languages] # Convert to text name
self.languages = list(languages)
class TheVaultFunction(datasets.GeneratorBasedBuilder):
"""The Vault dataset."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = TheVaultFunctionConfig
BUILDER_CONFIGS = [TheVaultFunctionConfig(languages=[lang]) for lang in _LANG_CONFIGS]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"hexsha": datasets.Value("string"),
"repo": datasets.Value("string"),
"path": datasets.Value("string"),
"license": datasets.Sequence(datasets.Value("string")),
"language": datasets.Value("string"),
"identifier": datasets.Value("string"),
"code": datasets.Value("string"),
"code_tokens": datasets.Sequence(datasets.Value("string")),
"original_comment": datasets.Value("string"),
"comment": datasets.Value("string"),
"comment_tokens": datasets.Sequence(datasets.Value("string")),
"start_point": datasets.Sequence(datasets.Value("int32")),
"end_point": datasets.Sequence(datasets.Value("int32")),
"prev_context":
{
"code": datasets.Value("string"),
"start_point": datasets.Sequence(datasets.Value("int32")),
"end_point": datasets.Sequence(datasets.Value("int32")),
},
"next_context":
{
"code": datasets.Value("string"),
"start_point": datasets.Sequence(datasets.Value("int32")),
"end_point": datasets.Sequence(datasets.Value("int32")),
},
}),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
generators = []
languages = self.config.languages
if "all" in languages:
languages = list(_LANG_TO_TEXT.values())
split_files = []
for language in languages:
num_shards = num_shard_split[language]
data_files = [
f"data/train/{language}-{_index:05d}-of-{num_shards:05d}.parquet"
for _index in range(num_shards)
]
files = dl_manager.download(data_files)
split_files.extend(files)
generators.append(
datasets.SplitGenerator(
name="train",
gen_kwargs={
"files": split_files,
},
),
)
return generators
def _generate_examples(self, files):
key = 0
for file_idx, file in enumerate(files):
with open(file, "rb") as f:
parquet_file = pq.ParquetFile(f)
for batch_idx, record_batch in enumerate(parquet_file.iter_batches(batch_size=10_000)):
pa_table = pa.Table.from_batches([record_batch])
for row_index in range(pa_table.num_rows):
row = pa_table.slice(row_index, 1).to_pydict()
yield key, {
"hexsha": row['hexsha'][0],
"repo": row['repo'][0],
"path": row['path'][0],
"license": row['license'][0],
"language": row['language'][0],
"identifier": row['identifier'][0],
"code": row['code'][0],
"code_tokens": row['code_tokens'][0],
"original_comment": row['original_comment'][0],
"comment": row['comment'][0],
"comment_tokens": row['comment_tokens'][0],
"start_point": row['start_point'][0],
"end_point": row['end_point'][0],
"prev_context": row['prev_context'][0],
"next_context": row['next_context'][0]
}
key += 1