--- language: - code - en multilinguality: - multiprogramming languages task_categories: - text-generation license: mit dataset_info: features: - name: identifier dtype: string - name: return_type dtype: string - name: repo dtype: string - name: path dtype: string - name: language dtype: string - name: code dtype: string - name: code_tokens dtype: string - name: original_docstring dtype: string - name: comment dtype: string - name: docstring_tokens dtype: string - name: docstring dtype: string - name: original_string dtype: string pretty_name: The Vault Function viewer: false --- ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Statistics](#dataset-statistics) - [Usage](#usage) - [Additional Information](#additional-information) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault) - **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156) - **Contact:** support.ailab@fpt.com - **Website:** https://www.fpt-aicenter.com/ai-residency/

logo

# The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
## Dataset Summary The Vault dataset is a comprehensive, large-scale, multilingual parallel dataset that features high-quality code-text pairs derived from The Stack, the largest permissively-licensed source code dataset. We provide The Vault which contains code snippets from 10 popular programming languages such as Java, JavaScript, Python, Ruby, Rust, Golang, C#, C++, C, and PHP. This dataset provides multiple code-snippet levels, metadata, and 11 docstring styles for enhanced usability and versatility. ## Supported Tasks The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*. ## Languages The natural language text (docstring) is in English. 10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust` ## Dataset Structure ### Data Instances ``` { "hexsha": "ee1cf38808d3db0ea364b049509a01a65e6e5589", "repo": "Waguy02/Boomer-Scripted", "path": "python/subprojects/testbed/mlrl/testbed/persistence.py", "license": [ "MIT" ], "language": "Python", "identifier": "__init__", "code": "def __init__(self, model_dir: str):\n \"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"\n self.model_dir = model_dir", "code_tokens": [ "def", "__init__", "(", "self", ",", "model_dir", ":", "str", ")", ":", "\"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"", "self", ".", "model_dir", "=", "model_dir" ], "original_comment": "\"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"", "comment": ":param model_dir: The path of the directory where models should be saved", "comment_tokens": [ ":", "param", "model_dir", ":", "The", "path", "of", "the", "directory", "where", "models", "should", "be", "saved" ], "start_point": [ 1, 8 ], "end_point": [ 3, 11 ], "prev_context": { "code": null, "start_point": null, "end_point": null }, "next_context": { "code": "self.model_dir = model_dir", "start_point": [ 4, 8 ], "end_point": [ 4, 34 ] } } ``` ### Data Fields Data fields for function level: - **hexsha** (string): the unique git hash of file - **repo** (string): the owner/repo - **path** (string): the full path to the original file - **license** (list): licenses in the repo - **language** (string): the programming language - **identifier** (string): the function or method name - **code** (string): the part of the original that is code - **code_tokens** (list): tokenized version of `code` - **original_comment** (string): original text of comment , - **comment** (string): clean version of comment, - **comment_tokens** (list): tokenized version of `comment`, - **start_point** (int): start position of `original_comment` in `code`, - **end_point** (int): end position of `original_comment` in `code`, - **prev_context** (dict): block of code before `original_comment`, - **next_context** (dict): block of code after `original_comment` ### Data Splits In this repo, the inline level data is not split, and contain in only train set. ## Dataset Statistics | Languages | Number of inline comments | |:-----------|---------------------------:| |Python | 14,013,238 | |Java | 17,062,277 | |JavaScript | 1,438,110 | |PHP | 5,873,744 | |C | 6,778,239 | |C# | 6,274,389 | |C++ | 10,343,650 | |Go | 4,390,342 | |Ruby | 767,563 | |Rust | 2,063,784 | |TOTAL | **69,005,336** | ## Usage You can load The Vault dataset using datasets library: ```pip install datasets``` ```python from datasets import load_dataset # Load full function level dataset (40M samples) dataset = load_dataset("Fsoft-AIC/the-vault-inline") # specific language (e.g. Python) dataset = load_dataset("Fsoft-AIC/the-vault-inline", languages=['Python']) # dataset streaming data = load_dataset("Fsoft-AIC/the-vault-inline", streaming= True) for sample in iter(data['train']): print(sample) ``` A back up dataset can be downloaded in azure storage. See [Download The Vault from Azure blob storage](https://github.com/FSoft-AI4Code/TheVault#download-via-link). ## Additional information ### Licensing Information MIT License ### Citation Information ``` @article{manh2023vault, title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation}, author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ}, journal={arXiv preprint arXiv:2305.06156}, year={2023} } ``` ### Contributions This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code).