|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NoCaps loading script.""" |
|
|
|
|
|
import json |
|
|
|
from collections import defaultdict |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{agrawal2019nocaps, |
|
title={nocaps: novel object captioning at scale}, |
|
author={Agrawal, Harsh and Desai, Karan and Wang, Yufei and Chen, Xinlei and Jain, Rishabh and Johnson, Mark and Batra, Dhruv and Parikh, Devi and Lee, Stefan and Anderson, Peter}, |
|
booktitle={Proceedings of the IEEE International Conference on Computer Vision}, |
|
pages={8948--8957}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Dubbed NoCaps, for novel object captioning at scale, NoCaps consists of 166,100 human-generated captions describing 15,100 images from the Open Images validation and test sets. |
|
The associated training data consists of COCO image-caption pairs, plus Open Images image-level labels and object bounding boxes. |
|
Since Open Images contains many more classes than COCO, nearly 400 object classes seen in test images have no or very few associated training captions (hence, nocaps). |
|
""" |
|
|
|
_HOMEPAGE = "https://nocaps.org/" |
|
|
|
_LICENSE = "CC BY 2.0" |
|
|
|
_URLS = { |
|
"validation": "https://nocaps.s3.amazonaws.com/nocaps_val_4500_captions.json", |
|
"test": "https://s3.amazonaws.com/nocaps/nocaps_test_image_info.json", |
|
} |
|
|
|
|
|
class NoCaps(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"image_coco_url": datasets.Value("string"), |
|
"image_date_captured": datasets.Value("string"), |
|
"image_file_name": datasets.Value("string"), |
|
"image_height": datasets.Value("int32"), |
|
"image_width": datasets.Value("int32"), |
|
"image_id": datasets.Value("int32"), |
|
"image_license": datasets.Value("int8"), |
|
"image_open_images_id": datasets.Value("string"), |
|
"annotations_ids": datasets.Sequence(datasets.Value("int32")), |
|
"annotations_captions": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_file = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": data_file["validation"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": data_file["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file): |
|
with open(data_file, encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
annotations = defaultdict(list) |
|
if "annotations" in data: |
|
|
|
for ann in data["annotations"]: |
|
image_id = ann["image_id"] |
|
caption_id = ann["id"] |
|
caption = ann["caption"] |
|
annotations[image_id].append((caption_id, caption)) |
|
|
|
counter = 0 |
|
for im in data["images"]: |
|
image_coco_url = im["coco_url"] |
|
image_date_captured = im["date_captured"] |
|
image_file_name = im["file_name"] |
|
image_height = im["height"] |
|
image_width = im["width"] |
|
image_id = im["id"] |
|
image_license = im["license"] |
|
image_open_images_id = im["open_images_id"] |
|
yield counter, { |
|
"image": image_coco_url, |
|
"image_coco_url": image_coco_url, |
|
"image_date_captured": image_date_captured, |
|
"image_file_name": image_file_name, |
|
"image_height": image_height, |
|
"image_width": image_width, |
|
"image_id": image_id, |
|
"image_license": image_license, |
|
"image_open_images_id": image_open_images_id, |
|
"annotations_ids": [ann[0] for ann in annotations[image_id]], |
|
"annotations_captions": [ann[1] for ann in annotations[image_id]], |
|
} |
|
counter += 1 |
|
|