--- language: - es license: apache-2.0 multilinguality: - monolingual size_categories: - n<1K source_datasets: - original task_categories: - summarization pretty_name: NoticIA dataset_info: features: - name: web_url dtype: string - name: web_headline dtype: string - name: summary dtype: string - name: web_text dtype: string splits: - name: train num_bytes: 2494253 num_examples: 700 - name: validation num_bytes: 214922 num_examples: 50 - name: test num_bytes: 358972 num_examples: 100 download_size: 1745629 dataset_size: 3068147 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* tags: - summarization - clickbait - news ---

"A Clickbait Article Summarization Dataset in Spanish."

We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. - 📖 Paper: [NoticIA: A Clickbait Article Summarization Dataset in Spanish](https://arxiv.org/abs/2404.07611) - 💻 Baseline Code: [https://github.com/ikergarcia1996/NoticIA](https://github.com/ikergarcia1996/NoticIA) - 🤖 Pre Trained Models [https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e](https://huggingface.co/collections/Iker/noticia-and-clickbaitfighter-65fdb2f80c34d7c063d3e48e) - 🔌 Online Demo: [https://iker-clickbaitfighter.hf.space/](https://iker-clickbaitfighter.hf.space/) For example, given the following headline and web text: ``` # ¿Qué pasará el 15 de enero de 2024? Al parecer, no todo es dulzura en las vacaciones de fin de años, como lo demuestra la nueva intrig.... ``` The summary is: ``` Que los estudiantes vuelven a clase. ``` # Data explanation - **web_url** (int): The URL of the news article - **web_headline** (str): The headline of the article, which is a Clickbait. - **web_text** (int): The body of the article. - **summary** (str): The summary written by humans that answers the clickbait headline. # Dataset Description - **Author:** [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) - **Author** [Begoña Altuna](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139) - **Web Page**: [Github](https://github.com/ikergarcia1996/NoticIA) - **Language(s) (NLP):** Spanish - **License:** apache-2.0 # Dataset Usage 1. We are working on implementing NoticIA on the Language Model Evaluation Harness library: https://github.com/EleutherAI/lm-evaluation-harness 2. If you want to train an LLM or reproduce the results in our paper, you can use our code. See the repository for more info: [https://github.com/ikergarcia1996/NoticIA](https://github.com/ikergarcia1996/NoticIA) 3. If you want to manually load the dataset and run inference with an LLM: You can load the dataset with the following command: ```Python from datasets import load_dataset dataset = load_dataset("Iker/NoticIA") ``` In order to perform inference with LLMs, you need to build a prompt. The one we use in our paper is: ```Python def clickbait_prompt( headline: str, body: str, ) -> str: """ Generate the prompt for the model. Args: headline (`str`): The headline of the article. body (`str`): The body of the article. Returns: `str`: The formatted prompt. """ return ( f"Ahora eres una Inteligencia Artificial experta en desmontar titulares sensacionalistas o clickbait. " f"Tu tarea consiste en analizar noticias con titulares sensacionalistas y " f"generar un resumen de una sola frase que revele la verdad detrás del titular.\n" f"Este es el titular de la noticia: {headline}\n" f"El titular plantea una pregunta o proporciona información incompleta. " f"Debes buscar en el cuerpo de la noticia una frase que responda lo que se sugiere en el título. " f"Responde siempre que puedas parafraseando el texto original. " f"Usa siempre las mínimas palabras posibles. " f"Recuerda responder siempre en Español.\n" f"Este es el cuerpo de la noticia:\n" f"{body}\n" ) ``` Here is a practical end-to-end example using the text generation pipeline. ```python from transformers import pipeline from datasets import load_dataset generator = pipeline(model="google/gemma-2b-it",device_map="auto") dataset = load_dataset("Iker/NoticIA") example = dataset["test"][0] prompt = clickbait_prompt(headline=example["web_headline"],body=example["web_text"]) outputs = generator(prompt, return_full_text=False,max_length=4096) print(outputs) # [{'generated_text': 'La tuitera ha recibido un número considerable de comentarios y mensajes de apoyo.'}] ``` Here is a practical end-to-end example using the generate function ```python from transformers import AutoTokenizer, AutoModelForCausalLM from datasets import load_dataset tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it",device_map="auto",quantization_config={"load_in_4bit": True}) dataset = load_dataset("Iker/NoticIA") example = dataset["test"][0] prompt = clickbait_prompt(headline=example["web_headline"],body=example["web_text"]) prompt = tokenizer.apply_chat_template( [{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer( text=prompt, max_length=3096, truncation=True, padding=False, return_tensors="pt", add_special_tokens=False, ) outputs = model.generate(**model_inputs,max_length=4096) output_text = tokenizer.batch_decode(outputs) print(output_text[0]) # La usuaria ha comprado un abrigo para su abuela de 97 años, pero la "yaya" no está de acuerdo. ``` # Uses This dataset is intended to build models tailored for academic research that can extract information from large texts. The objective is to research whether current LLMs, given a question formulated as a Clickbait headline, can locate the answer within the article body and summarize the information in a few words. The dataset also aims to serve as a task to evaluate the performance of current LLMs in Spanish. # Out-of-Scope Use You cannot use this dataset to develop systems that directly harm the newspapers included in the dataset. This includes using the dataset to train profit-oriented LLMs capable of generating articles from a short text or headline, as well as developing profit-oriented bots that automatically summarize articles without the permission of the article's owner. Additionally, you are not permitted to train a system with this dataset that generates clickbait headlines. This dataset contains text and headlines from newspapers; therefore, you cannot use it for commercial purposes unless you have the license for the data. # Dataset Creation The dataset has been meticulously created by hand. We utilize two sources to compile Clickbait articles: - The Twitter user [@ahorrandoclick1](https://twitter.com/ahorrandoclick1), who reposts Clickbait articles along with a hand-crafted summary. Although we use their summaries as a reference, most of them have been rewritten (750 examples from this source). - The web demo [⚔️ClickbaitFighter⚔️](https://iker-clickbaitfighter.hf.space/), which operates a pre-trained model using an early iteration of our dataset. We collect all the model inputs/outputs and manually correct them (100 examples from this source). # Who are the annotators? The dataset was annotated by [Iker García-Ferrero](https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/) and validated by [Begoña Altuna](https://www.linkedin.com/in/bego%C3%B1a-altuna-78014139). The annotation took ~40 hours. # Citation ```bittext @misc{noticia2024, title={NoticIA: A Clickbait Article Summarization Dataset in Spanish}, author={Iker García-Ferrero and Begoña Altuna}, year={2024}, eprint={2404.07611}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```