LeroyDyer commited on
Commit
7c72045
1 Parent(s): 9d3c7fe

Upload 2 files

Browse files
langchain-docs_2023-03-28.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {"id": "68bbda45401c-0", "text": ".rst\n.pdf\nWelcome to LangChain\n Contents \nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\nWelcome to LangChain#\nLangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model via an API, but will also:\nBe data-aware: connect a language model to other sources of data\nBe agentic: allow a language model to interact with its environment\nThe LangChain framework is designed with the above principles in mind.\nThis is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see here. For the JavaScript documentation, see here.\nGetting Started#\nCheckout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.\nGetting Started Documentation\nModules#\nThere are several main modules that LangChain provides support for.\nFor each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides.\nThese modules are, in increasing order of complexity:\nModels: The various model types and model integrations LangChain supports.\nPrompts: This includes prompt management, prompt optimization, and prompt serialization.\nMemory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\nIndexes: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.\nChains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.", "source": "https://langchain.readthedocs.io/en/latest/index.html"}
2
+ {"id": "68bbda45401c-1", "text": "Agents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\nUse Cases#\nThe above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.\nPersonal Assistants: The main LangChain use case. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\nQuestion Answering: The second big LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\nChatbots: Since language models are good at producing text, that makes them ideal for creating chatbots.\nQuerying Tabular Data: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.\nInteracting with APIs: Enabling LLMs to interact with APIs is extremely powerful in order to give them more up-to-date information and allow them to take actions.\nExtraction: Extract structured information from text.\nSummarization: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.\nEvaluation: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\nReference Docs#\nAll of LangChain\u2019s reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\nReference Documentation\nLangChain Ecosystem#\nGuides for how other companies/products can be used with LangChain\nLangChain Ecosystem", "source": "https://langchain.readthedocs.io/en/latest/index.html"}
3
+ {"id": "68bbda45401c-2", "text": "Guides for how other companies/products can be used with LangChain\nLangChain Ecosystem\nAdditional Resources#\nAdditional collection of resources we think may be useful as you develop your application!\nLangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents.\nGlossary: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!\nGallery: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\nDeployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\nTracing: A guide on using tracing in LangChain to visualize the execution of chains and agents.\nModel Laboratory: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\nDiscord: Join us on our Discord to discuss all things LangChain!\nProduction Support: As you move your LangChains into production, we\u2019d love to offer more comprehensive support. Please fill out this form and we\u2019ll set up a dedicated support Slack channel.\nnext\nQuickstart Guide\n Contents\n \nGetting Started\nModules\nUse Cases\nReference Docs\nLangChain Ecosystem\nAdditional Resources\nBy Harrison Chase\n \n \u00a9 Copyright 2023, Harrison Chase.\n \n Last updated on Mar 28, 2023.", "source": "https://langchain.readthedocs.io/en/latest/index.html"}
streamlit-docs-dataset2023-03-28_2023-03-28.jsonl ADDED
The diff for this file is too large to render. See raw diff