Datasets:
Modalities:
Text
Formats:
text
Size:
< 1K
Tags:
humanoid-robotics
fall-prediction
machine-learning
sensor-data
robotics
temporal-convolutional-networks
License:
File size: 2,147 Bytes
bc5a291 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# Usage Example for the Fall Prediction Dataset
# Please install dependencies before:
# pip install -r requirements.txt
# Import necessary libraries
import pandas as pd
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, Dropout
from sklearn.model_selection import train_test_split
# Load the dataset from Huggingface or a local file path
# Example for local loading; replace with Huggingface dataset call if applicable
real_data = pd.read_csv('dataset.csv.bz2', compression='bz2')
# Preview the dataset
print(real_data.head())
# Select relevant columns (replace these with actual column names from your dataset)
# Here we assume that the dataset contains sensor readings like gyroscope and accelerometer data
relevant_columns = ['gyro_x', 'gyro_y', 'gyro_z', 'acc_x', 'acc_y', 'acc_z', 'upright']
sensordata = real_data[relevant_columns]
# Split the data into features (X) and labels (y)
# 'fall_label' is assumed to be the column indicating whether a fall occurred
X = sensordata.drop(columns=['upright']) # Replace 'fall_label' with the actual label column
y = sensordata['upright']
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Reshape data for LSTM input (assuming time-series data)
# Adjust the reshaping based on your dataset structure
X_train = X_train.values.reshape(X_train.shape[0], X_train.shape[1], 1)
X_test = X_test.values.reshape(X_test.shape[0], X_test.shape[1], 1)
# Define a simple LSTM model
model = Sequential()
model.add(LSTM(64, input_shape=(X_train.shape[1], 1)))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Train the model
history = model.fit(X_train, y_train, epochs=10, batch_size=64, validation_data=(X_test, y_test))
# Evaluate the model on the test set
loss, accuracy = model.evaluate(X_test, y_test)
print(f"Test Accuracy: {accuracy * 100:.2f}%")
# You can save the model if needed
# model.save('fall_prediction_model.h5') |