Datasets:
Removed script + moved original JSON files
Browse files- challenge.json → json/challenge.json +0 -0
- dev.json → json/dev.json +0 -0
- test.json → json/test.json +0 -0
- train.json → json/train.json +0 -0
- webnlgqa.py +0 -199
challenge.json → json/challenge.json
RENAMED
File without changes
|
dev.json → json/dev.json
RENAMED
File without changes
|
test.json → json/test.json
RENAMED
File without changes
|
train.json → json/train.json
RENAMED
File without changes
|
webnlgqa.py
DELETED
@@ -1,199 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import zipfile
|
3 |
-
import json
|
4 |
-
import base64
|
5 |
-
import sys
|
6 |
-
import traceback
|
7 |
-
|
8 |
-
import datasets
|
9 |
-
|
10 |
-
_CITATION = """\
|
11 |
-
@inproceedings{lecorve2022sparql2text,
|
12 |
-
title={SPARQL-to-Text Question Generation for Knowledge-Based Conversational Applications},
|
13 |
-
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
|
14 |
-
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
|
15 |
-
year={2022}
|
16 |
-
}
|
17 |
-
"""
|
18 |
-
|
19 |
-
_HOMEPAGE = ""
|
20 |
-
|
21 |
-
_URLS = {
|
22 |
-
"train": "train.json",
|
23 |
-
"dev": "dev.json",
|
24 |
-
"test": "test.json",
|
25 |
-
"challenge": "challenge.json"
|
26 |
-
}
|
27 |
-
|
28 |
-
_DESCRIPTION = """\
|
29 |
-
Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries.
|
30 |
-
"""
|
31 |
-
|
32 |
-
class WebNLGQA(datasets.GeneratorBasedBuilder):
|
33 |
-
"""
|
34 |
-
WebNLG-QA: Augmented version of WebNLG v3.0 English with follow-up SPARQL queries with their associated answer(s). A small portion of it also contains natural language questions associated with the queries.
|
35 |
-
"""
|
36 |
-
|
37 |
-
VERSION = datasets.Version("1.0.0")
|
38 |
-
|
39 |
-
def _info(self):
|
40 |
-
return datasets.DatasetInfo(
|
41 |
-
# This is the description that will appear on the datasets page.
|
42 |
-
description=_DESCRIPTION,
|
43 |
-
# datasets.features.FeatureConnectors
|
44 |
-
features=datasets.Features(
|
45 |
-
{
|
46 |
-
"category": datasets.Value("string"),
|
47 |
-
"size": datasets.Value("int32"),
|
48 |
-
"id": datasets.Value("string"),
|
49 |
-
"eid": datasets.Value("string"),
|
50 |
-
"original_triple_sets": [
|
51 |
-
{"subject": datasets.Value("string"),
|
52 |
-
"property": datasets.Value("string"),
|
53 |
-
"object": datasets.Value("string")}
|
54 |
-
],
|
55 |
-
"modified_triple_sets": [
|
56 |
-
{"subject": datasets.Value("string"),
|
57 |
-
"property": datasets.Value("string"),
|
58 |
-
"object": datasets.Value("string")}
|
59 |
-
],
|
60 |
-
"shape": datasets.Value("string"),
|
61 |
-
"shape_type": datasets.Value("string"),
|
62 |
-
"lex": datasets.Sequence(
|
63 |
-
{
|
64 |
-
"comment": datasets.Value("string"),
|
65 |
-
"lid": datasets.Value("string"),
|
66 |
-
"text": datasets.Value("string"),
|
67 |
-
"lang": datasets.Value("string"),
|
68 |
-
}
|
69 |
-
),
|
70 |
-
"test_category": datasets.Value("string"),
|
71 |
-
"dbpedia_links": datasets.Sequence(datasets.Value("string")),
|
72 |
-
"links": datasets.Sequence(datasets.Value("string")),
|
73 |
-
"graph": [
|
74 |
-
[datasets.Value("string")]
|
75 |
-
],
|
76 |
-
"main_entity": datasets.Value("string"),
|
77 |
-
"mappings": [
|
78 |
-
{
|
79 |
-
"modified": datasets.Value("string"),
|
80 |
-
"readable": datasets.Value("string"),
|
81 |
-
"graph": datasets.Value("string")
|
82 |
-
}
|
83 |
-
],
|
84 |
-
"dialogue": [
|
85 |
-
{
|
86 |
-
"question": [ {
|
87 |
-
"source": datasets.Value("string"),
|
88 |
-
"text": datasets.Value("string")
|
89 |
-
}],
|
90 |
-
"graph_query": datasets.Value("string"),
|
91 |
-
"readable_query": datasets.Value("string"),
|
92 |
-
"graph_answer": [
|
93 |
-
datasets.Value("string")
|
94 |
-
],
|
95 |
-
"readable_answer": [
|
96 |
-
datasets.Value("string")
|
97 |
-
],
|
98 |
-
"type": [ datasets.Value("string") ]
|
99 |
-
}
|
100 |
-
]
|
101 |
-
}
|
102 |
-
),
|
103 |
-
# If there's a common (input, target) tuple from the features,
|
104 |
-
# specify them here. They'll be used if as_supervised=True in
|
105 |
-
# builder.as_dataset
|
106 |
-
supervised_keys=None,
|
107 |
-
# Homepage of the dataset for documentation
|
108 |
-
homepage=_HOMEPAGE,
|
109 |
-
citation=_CITATION,
|
110 |
-
)
|
111 |
-
|
112 |
-
def _split_generators(self, dl_manager):
|
113 |
-
"""Returns SplitGenerators."""
|
114 |
-
# Downloads the data and defines the splits
|
115 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
116 |
-
# download and extract URLs
|
117 |
-
paths = dl_manager.download_and_extract(_URLS)
|
118 |
-
return [
|
119 |
-
datasets.SplitGenerator(
|
120 |
-
name=datasets.Split.TRAIN,
|
121 |
-
gen_kwargs={"filepath": paths['train'],
|
122 |
-
"split": "train"}
|
123 |
-
),
|
124 |
-
datasets.SplitGenerator(
|
125 |
-
name=datasets.Split.VALIDATION,
|
126 |
-
gen_kwargs={"filepath": paths['dev'],
|
127 |
-
"split": "dev"}
|
128 |
-
),
|
129 |
-
datasets.SplitGenerator(
|
130 |
-
name=datasets.Split.TEST,
|
131 |
-
gen_kwargs={"filepath": paths['test'],
|
132 |
-
"split": "test"}
|
133 |
-
),
|
134 |
-
datasets.SplitGenerator(
|
135 |
-
name="challenge",
|
136 |
-
gen_kwargs={"filepath": paths['challenge'],
|
137 |
-
"split": "challenge"}
|
138 |
-
)
|
139 |
-
]
|
140 |
-
|
141 |
-
|
142 |
-
def _generate_examples(self, filepath, split):
|
143 |
-
"""Yields examples."""
|
144 |
-
|
145 |
-
def transform_sample(original_sample):
|
146 |
-
transformed_sample = {
|
147 |
-
"category": "",
|
148 |
-
"size": -1,
|
149 |
-
"id": "",
|
150 |
-
"eid": "",
|
151 |
-
"original_triple_sets": [],
|
152 |
-
"modified_triple_sets": [],
|
153 |
-
"shape": "",
|
154 |
-
"shape_type": "",
|
155 |
-
"lex": [],
|
156 |
-
"test_category": "",
|
157 |
-
"dbpedia_links": [],
|
158 |
-
"links": [],
|
159 |
-
"graph": [],
|
160 |
-
"main_entity": "",
|
161 |
-
"mappings": [],
|
162 |
-
"dialogue": []
|
163 |
-
}
|
164 |
-
|
165 |
-
for (old_key, new_key) in [("modifiedtripleset", "modified_triple_sets"), ("originaltriplesets", "original_triple_sets"), ("dbpedialinks", "dbpedia_links"), ("lexicalisations", "lex"), ("xml_id", "eid")]:
|
166 |
-
original_sample[new_key] = original_sample[old_key]
|
167 |
-
del original_sample[old_key]
|
168 |
-
|
169 |
-
original_sample["original_triple_sets"] = original_sample["original_triple_sets"]["originaltripleset"][0]
|
170 |
-
|
171 |
-
for l in original_sample["lex"]:
|
172 |
-
l["lid"] = l["xml_id"]
|
173 |
-
del l["xml_id"]
|
174 |
-
l["text"] = l["lex"]
|
175 |
-
del l["lex"]
|
176 |
-
|
177 |
-
for turn in original_sample["dialogue"]:
|
178 |
-
if "question" in turn:
|
179 |
-
old_format = turn["question"]
|
180 |
-
new_format = []
|
181 |
-
for source, text in old_format.items():
|
182 |
-
new_format.append({"source": source, "text": text})
|
183 |
-
turn["question"] = new_format
|
184 |
-
|
185 |
-
|
186 |
-
for k in transformed_sample:
|
187 |
-
if k in original_sample:
|
188 |
-
transformed_sample[k] = original_sample[k]
|
189 |
-
# transformed_sample.update(original_sample)
|
190 |
-
|
191 |
-
return transformed_sample
|
192 |
-
|
193 |
-
# Yields (key, example) tuples from the dataset
|
194 |
-
with open(filepath,'r') as f:
|
195 |
-
data = json.load(f)
|
196 |
-
key = 0
|
197 |
-
for it in data:
|
198 |
-
yield key, transform_sample(it)
|
199 |
-
key += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|