# coding=utf-8 # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import os import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ DureaderRobust is a chinese reading comprehension \ dataset, designed to evaluate the MRC models from \ three aspects: over-sensitivity, over-stability \ and generalization. """ _URL = "https://bj.bcebos.com/paddlenlp/datasets/dureader_robust-data.tar.gz" class DureaderRobustConfig(datasets.BuilderConfig): """BuilderConfig for DureaderRobust.""" def __init__(self, **kwargs): """BuilderConfig for DureaderRobust. Args: **kwargs: keyword arguments forwarded to super. """ super(DureaderRobustConfig, self).__init__(**kwargs) class DureaderRobust(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ DureaderRobustConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://arxiv.org/abs/2004.11142", ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_URL) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'train.json')}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'dev.json')}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(dl_dir,'dureader_robust-data', 'test.json')}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) key = 0 with open(filepath, encoding="utf-8") as f: durobust = json.load(f) for article in durobust["data"]: title = article.get("title", "") for paragraph in article["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: answer_starts = [answer["answer_start"] for answer in qa.get("answers",'')] answers = [answer["text"] for answer in qa.get("answers",'')] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield key, { "title": title, "context": context, "question": qa["question"], "id": qa["id"], "answers": { "answer_start": answer_starts, "text": answers, }, } key += 1