holylovenia commited on
Commit
7638409
1 Parent(s): d94a9d1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +53 -17
README.md CHANGED
@@ -1,21 +1,59 @@
 
1
  ---
2
- license: mit
3
- tags:
4
- - emotion-classification
5
- language:
6
  - ind
 
 
 
 
 
7
  ---
8
 
9
- # emotcmt
10
-
11
  EmotCMT is an emotion classification Indonesian-English code-mixing dataset created through an Indonesian-English code-mixed Twitter data pipeline consisting of 4 processing steps, i.e., tokenization, language identification, lexical normalization, and translation. The dataset consists of 825 tweets, 22.736 tokens with 11.204 Indonesian tokens and 5.613 English tokens. Each tweet is labelled with an emotion, i.e., cinta (love), takut (fear), sedih (sadness), senang (joy), or marah (anger).
12
 
 
 
 
 
 
 
 
 
 
13
  ## Dataset Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- Run `pip install nusacrowd` before loading the dataset through HuggingFace's `load_dataset`.
 
 
 
 
 
 
 
 
16
 
17
  ## Citation
18
 
 
19
  ```
20
  @inproceedings{barik-etal-2019-normalization,
21
  title = "Normalization of {I}ndonesian-{E}nglish Code-Mixed {T}witter Data",
@@ -38,16 +76,14 @@ Run `pip install nusacrowd` before loading the dataset through HuggingFace's `lo
38
  journal={International Journal of Advanced Computer Science and Applications},
39
  year={2021}
40
  }
41
- ```
42
 
43
- ## License
44
 
45
- MIT
46
-
47
- ## Homepage
48
-
49
- [https://github.com/ir-nlp-csui/emotcmt](https://github.com/ir-nlp-csui/emotcmt)
50
-
51
- ### NusaCatalogue
52
 
53
- For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)
 
1
+
2
  ---
3
+ language:
 
 
 
4
  - ind
5
+ pretty_name: Emotcmt
6
+ task_categories:
7
+ - emotion-classification
8
+ tags:
9
+ - emotion-classification
10
  ---
11
 
 
 
12
  EmotCMT is an emotion classification Indonesian-English code-mixing dataset created through an Indonesian-English code-mixed Twitter data pipeline consisting of 4 processing steps, i.e., tokenization, language identification, lexical normalization, and translation. The dataset consists of 825 tweets, 22.736 tokens with 11.204 Indonesian tokens and 5.613 English tokens. Each tweet is labelled with an emotion, i.e., cinta (love), takut (fear), sedih (sadness), senang (joy), or marah (anger).
13
 
14
+
15
+ ## Languages
16
+
17
+ ind
18
+
19
+ ## Supported Tasks
20
+
21
+ Emotion Classification
22
+
23
  ## Dataset Usage
24
+ ### Using `datasets` library
25
+ ```
26
+ from datasets import load_dataset
27
+ dset = datasets.load_dataset("SEACrowd/emotcmt", trust_remote_code=True)
28
+ ```
29
+ ### Using `seacrowd` library
30
+ ```import seacrowd as sc
31
+ # Load the dataset using the default config
32
+ dset = sc.load_dataset("emotcmt", schema="seacrowd")
33
+ # Check all available subsets (config names) of the dataset
34
+ print(sc.available_config_names("emotcmt"))
35
+ # Load the dataset using a specific config
36
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
37
+ ```
38
+
39
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
40
+
41
+
42
+ ## Dataset Homepage
43
 
44
+ [https://github.com/ir-nlp-csui/emotcmt](https://github.com/ir-nlp-csui/emotcmt)
45
+
46
+ ## Dataset Version
47
+
48
+ Source: 1.0.0. SEACrowd: 2024.06.20.
49
+
50
+ ## Dataset License
51
+
52
+ MIT
53
 
54
  ## Citation
55
 
56
+ If you are using the **Emotcmt** dataloader in your work, please cite the following:
57
  ```
58
  @inproceedings{barik-etal-2019-normalization,
59
  title = "Normalization of {I}ndonesian-{E}nglish Code-Mixed {T}witter Data",
 
76
  journal={International Journal of Advanced Computer Science and Applications},
77
  year={2021}
78
  }
 
79
 
 
80
 
81
+ @article{lovenia2024seacrowd,
82
+ title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
83
+ author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
84
+ year={2024},
85
+ eprint={2406.10118},
86
+ journal={arXiv preprint arXiv: 2406.10118}
87
+ }
88
 
89
+ ```