holylovenia
commited on
Commit
•
d7631da
1
Parent(s):
06fcb0a
Upload prdect_id.py with huggingface_hub
Browse files- prdect_id.py +161 -0
prdect_id.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
from datasets.download.download_manager import DownloadManager
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
_CITATION = """
|
13 |
+
@article{SUTOYO2022108554,
|
14 |
+
title = {PRDECT-ID: Indonesian product reviews dataset for emotions classification tasks},
|
15 |
+
journal = {Data in Brief},
|
16 |
+
volume = {44},
|
17 |
+
pages = {108554},
|
18 |
+
year = {2022},
|
19 |
+
issn = {2352-3409},
|
20 |
+
doi = {https://doi.org/10.1016/j.dib.2022.108554},
|
21 |
+
url = {https://www.sciencedirect.com/science/article/pii/S2352340922007612},
|
22 |
+
author = {Rhio Sutoyo and Said Achmad and Andry Chowanda and Esther Widhi Andangsari and Sani M. Isa},
|
23 |
+
keywords = {Natural language processing, Text processing, Text mining, Emotions classification, Sentiment analysis},
|
24 |
+
abstract = {Recognizing emotions is vital in communication. Emotions convey
|
25 |
+
additional meanings to the communication process. Nowadays, people can
|
26 |
+
communicate their emotions on many platforms; one is the product review. Product
|
27 |
+
reviews in the online platform are an important element that affects customers’
|
28 |
+
buying decisions. Hence, it is essential to recognize emotions from the product
|
29 |
+
reviews. Emotions recognition from the product reviews can be done automatically
|
30 |
+
using a machine or deep learning algorithm. Dataset can be considered as the
|
31 |
+
fuel to model the recognizer. However, only a limited dataset exists in
|
32 |
+
recognizing emotions from the product reviews, particularly in a local language.
|
33 |
+
This research contributes to the dataset collection of 5400 product reviews in
|
34 |
+
Indonesian. It was carefully curated from various (29) product categories,
|
35 |
+
annotated with five emotions, and verified by an expert in clinical psychology.
|
36 |
+
The dataset supports an innovative process to build automatic emotion
|
37 |
+
classification on product reviews.}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_LOCAL = False
|
42 |
+
_LANGUAGES = ["ind"]
|
43 |
+
_DATASETNAME = "prdect_id"
|
44 |
+
_DESCRIPTION = """
|
45 |
+
PRDECT-ID Dataset is a collection of Indonesian product review data annotated
|
46 |
+
with emotion and sentiment labels. The data were collected from one of the giant
|
47 |
+
e-commerce in Indonesia named Tokopedia. The dataset contains product reviews
|
48 |
+
from 29 product categories on Tokopedia that use the Indonesian language. Each
|
49 |
+
product review is annotated with a single emotion, i.e., love, happiness, anger,
|
50 |
+
fear, or sadness. The group of annotators does the annotation process to provide
|
51 |
+
emotion labels by following the emotions annotation criteria created by an
|
52 |
+
expert in clinical psychology. Other attributes related to the product review
|
53 |
+
are also extracted, such as Location, Price, Overall Rating, Number Sold, Total
|
54 |
+
Review, and Customer Rating, to support further research.
|
55 |
+
"""
|
56 |
+
|
57 |
+
_HOMEPAGE = "https://data.mendeley.com/datasets/574v66hf2v/1"
|
58 |
+
_LICENSE = Licenses.CC_BY_4_0.value
|
59 |
+
_URL = "https://data.mendeley.com/public-files/datasets/574v66hf2v/files/f258d159-c678-42f1-9634-edf091a0b1f3/file_downloaded"
|
60 |
+
|
61 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.EMOTION_CLASSIFICATION]
|
62 |
+
_SOURCE_VERSION = "1.0.0"
|
63 |
+
_SEACROWD_VERSION = "2024.06.20"
|
64 |
+
|
65 |
+
|
66 |
+
class PrdectIDDataset(datasets.GeneratorBasedBuilder):
|
67 |
+
"""PRDECT-ID Dataset"""
|
68 |
+
|
69 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
70 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
71 |
+
|
72 |
+
SEACROWD_SCHEMA_NAME = "text"
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
SEACrowdConfig(
|
76 |
+
name=f"{_DATASETNAME}_emotion_source",
|
77 |
+
version=SOURCE_VERSION,
|
78 |
+
description=f"{_DATASETNAME} source schema",
|
79 |
+
schema="source",
|
80 |
+
subset_id=f"{_DATASETNAME}_emotion",
|
81 |
+
),
|
82 |
+
SEACrowdConfig(
|
83 |
+
name=f"{_DATASETNAME}_sentiment_source",
|
84 |
+
version=SOURCE_VERSION,
|
85 |
+
description=f"{_DATASETNAME} source schema",
|
86 |
+
schema="source",
|
87 |
+
subset_id=f"{_DATASETNAME}_sentiment",
|
88 |
+
),
|
89 |
+
SEACrowdConfig(
|
90 |
+
name=f"{_DATASETNAME}_emotion_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
91 |
+
version=SEACROWD_VERSION,
|
92 |
+
description=f"{_DATASETNAME} SEACrowd schema for emotion classification",
|
93 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
94 |
+
subset_id=f"{_DATASETNAME}_emotion",
|
95 |
+
),
|
96 |
+
SEACrowdConfig(
|
97 |
+
name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
98 |
+
version=SEACROWD_VERSION,
|
99 |
+
description=f"{_DATASETNAME} SEACrowd schema for sentiment analysis",
|
100 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
101 |
+
subset_id=f"{_DATASETNAME}_sentiment",
|
102 |
+
),
|
103 |
+
]
|
104 |
+
|
105 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
106 |
+
CLASS_LABELS_EMOTION = ["Happy", "Sadness", "Anger", "Love", "Fear"]
|
107 |
+
CLASS_LABELS_SENTIMENT = ["Positive", "Negative"]
|
108 |
+
|
109 |
+
def _info(self) -> datasets.DatasetInfo:
|
110 |
+
if self.config.schema == "source":
|
111 |
+
features = datasets.Features(
|
112 |
+
{
|
113 |
+
"Category": datasets.Value("string"),
|
114 |
+
"Product Name": datasets.Value("string"),
|
115 |
+
"Location": datasets.Value("string"),
|
116 |
+
"Price": datasets.Value("int32"),
|
117 |
+
"Overall Rating": datasets.Value("float32"),
|
118 |
+
"Number Sold": datasets.Value("int32"),
|
119 |
+
"Total Review": datasets.Value("int32"),
|
120 |
+
"Customer Rating": datasets.Value("int32"),
|
121 |
+
"Customer Review": datasets.Value("string"),
|
122 |
+
"Sentiment": datasets.ClassLabel(names=self.CLASS_LABELS_SENTIMENT),
|
123 |
+
"Emotion": datasets.ClassLabel(names=self.CLASS_LABELS_EMOTION),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
elif self.config.schema == "seacrowd_text":
|
127 |
+
if self.config.subset_id == f"{_DATASETNAME}_emotion":
|
128 |
+
features = schemas.text_features(label_names=self.CLASS_LABELS_EMOTION)
|
129 |
+
elif self.config.subset_id == f"{_DATASETNAME}_sentiment":
|
130 |
+
features = schemas.text_features(label_names=self.CLASS_LABELS_SENTIMENT)
|
131 |
+
else:
|
132 |
+
raise ValueError(f"Invalid subset: {self.config.subset_id}")
|
133 |
+
else:
|
134 |
+
raise ValueError(f"Schema '{self.config.schema}' is not defined.")
|
135 |
+
|
136 |
+
return datasets.DatasetInfo(
|
137 |
+
description=_DESCRIPTION,
|
138 |
+
features=features,
|
139 |
+
homepage=_HOMEPAGE,
|
140 |
+
license=_LICENSE,
|
141 |
+
citation=_CITATION,
|
142 |
+
)
|
143 |
+
|
144 |
+
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
|
145 |
+
"""Returns SplitGenerators."""
|
146 |
+
data_file = Path(dl_manager.download(_URL))
|
147 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]
|
148 |
+
|
149 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
150 |
+
"""Yield examples as (key, example) tuples"""
|
151 |
+
df = pd.read_csv(filepath, encoding="utf-8")
|
152 |
+
for idx, row in df.iterrows():
|
153 |
+
if self.config.schema == "source":
|
154 |
+
yield idx, dict(row)
|
155 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
156 |
+
if self.config.subset_id == f"{_DATASETNAME}_emotion":
|
157 |
+
yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Emotion"]}
|
158 |
+
elif self.config.subset_id == f"{_DATASETNAME}_sentiment":
|
159 |
+
yield idx, {"id": idx, "text": row["Customer Review"], "label": row["Sentiment"]}
|
160 |
+
else:
|
161 |
+
raise ValueError(f"Invalid subset: {self.config.subset_id}")
|