|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.sea_datasets.x_fact.utils.x_fact_utils import \ |
|
load_x_fact_dataset |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{gupta2021xfact, |
|
title={{X-FACT: A New Benchmark Dataset for Multilingual Fact Checking}}, |
|
author={Gupta, Ashim and Srikumar, Vivek}, |
|
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2021", |
|
address = "Online", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
""" |
|
_DATASETNAME = "x_fact" |
|
|
|
_DESCRIPTION = """\ |
|
X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/utahnlp/x-fact" |
|
|
|
_LANGUAGES = [ |
|
'ara', 'aze', 'ben', 'deu', 'spa', |
|
'fas', 'fra', 'guj', 'hin', 'ind', |
|
'ita', 'kat', 'mar', 'nor', 'nld', |
|
'pan', 'pol', 'por', 'ron', 'rus', |
|
'sin', 'srp', 'sqi', 'tam', 'tur' |
|
] |
|
_LOCAL = False |
|
|
|
_LICENSE = "MIT" |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/train.all.tsv", |
|
"validation": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/dev.all.tsv", |
|
"test": { |
|
"in_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/test.all.tsv", |
|
"out_domain": "https://raw.githubusercontent.com/utahnlp/x-fact/main/data/x-fact-including-en/ood.tsv", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.FACT_CHECKING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class XFact(datasets.GeneratorBasedBuilder): |
|
"""X-FACT: the largest publicly available multilingual dataset for factual verification of naturally existing realworld claims.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="x_fact_source", |
|
version=SOURCE_VERSION, |
|
description="x_fact source schema", |
|
schema="source", |
|
subset_id="x_fact", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "x_fact_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"language": datasets.Value("string"), |
|
"site": datasets.Value("string"), |
|
"evidence_1": datasets.Value("string"), |
|
"evidence_2": datasets.Value("string"), |
|
"evidence_3": datasets.Value("string"), |
|
"evidence_4": datasets.Value("string"), |
|
"evidence_5": datasets.Value("string"), |
|
"link_1": datasets.Value("string"), |
|
"link_2": datasets.Value("string"), |
|
"link_3": datasets.Value("string"), |
|
"link_4": datasets.Value("string"), |
|
"link_5": datasets.Value("string"), |
|
"claimDate": datasets.Value("string"), |
|
"reviewDate": datasets.Value("string"), |
|
"claimant": datasets.Value("string"), |
|
"claim": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": _URLS["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": _URLS["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.splits.NamedSplit("TEST_IN_DOMAIN"), |
|
gen_kwargs={ |
|
"filepath": _URLS["test"]["in_domain"], |
|
"split": "test_in_domain", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.splits.NamedSplit("TEST_OUT_DOMAIN"), |
|
gen_kwargs={ |
|
"filepath": _URLS["test"]["out_domain"], |
|
"split": "test_out_domain", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
|
|
df = load_x_fact_dataset(filepath) |
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
entry = { |
|
"language": row.language, |
|
"site": row.site, |
|
"evidence_1": row.evidence_1, |
|
"evidence_2": row.evidence_2, |
|
"evidence_3": row.evidence_3, |
|
"evidence_4": row.evidence_4, |
|
"evidence_5": row.evidence_5, |
|
"link_1": row.link_1, |
|
"link_2": row.link_2, |
|
"link_3": row.link_3, |
|
"link_4": row.link_4, |
|
"link_5": row.link_5, |
|
"claimDate": row.claimDate, |
|
"reviewDate": row.reviewDate, |
|
"claimant": row.claimant, |
|
"claim": row.claim, |
|
"label": row.label, |
|
} |
|
yield row.index, entry |
|
|