Upload 4 files
Browse files- app.py +63 -0
- model.joblib +3 -0
- requirements.txt +1 -0
- train.py +68 -0
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the libraries
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
# Run the training script placed in the same directory as app.py
|
6 |
+
# The training script will train and persist a linear regression
|
7 |
+
# model with the filename 'model.joblib'
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Load the freshly trained model from disk
|
13 |
+
|
14 |
+
|
15 |
+
# Prepare the logging functionality
|
16 |
+
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
|
17 |
+
log_folder = log_file.parent
|
18 |
+
|
19 |
+
scheduler = CommitScheduler(
|
20 |
+
repo_id="-----------", # provide a name "insurance-charge-mlops-logs" for the repo_id
|
21 |
+
repo_type="dataset",
|
22 |
+
folder_path=log_folder,
|
23 |
+
path_in_repo="data",
|
24 |
+
every=2
|
25 |
+
)
|
26 |
+
|
27 |
+
# Define the predict function which will take features, convert to dataframe and make predictions using the saved model
|
28 |
+
# the functions runs when 'Submit' is clicked or when a API request is made
|
29 |
+
|
30 |
+
|
31 |
+
# While the prediction is made, log both the inputs and outputs to a log file
|
32 |
+
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel
|
33 |
+
# access
|
34 |
+
|
35 |
+
with scheduler.lock:
|
36 |
+
with log_file.open("a") as f:
|
37 |
+
f.write(json.dumps(
|
38 |
+
{
|
39 |
+
'age': age,
|
40 |
+
'bmi': bmi,
|
41 |
+
'children': children,
|
42 |
+
'sex': sex,
|
43 |
+
'smoker': smoker,
|
44 |
+
'region': region,
|
45 |
+
'prediction': prediction[0]
|
46 |
+
}
|
47 |
+
))
|
48 |
+
f.write("\n")
|
49 |
+
|
50 |
+
return prediction[0]
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
# Set up UI components for input and output
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
# Create the gradio interface, make title "HealthyLife Insurance Charge Prediction"
|
59 |
+
|
60 |
+
|
61 |
+
# Launch with a load balancer
|
62 |
+
demo.queue()
|
63 |
+
demo.launch(share=False)
|
model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a389766ae43175dfcf9d32ddadb5925fe5521ca1b5875de9af11fbe4754616df
|
3 |
+
size 3849
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.3.2
|
train.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import joblib
|
3 |
+
from sklearn.preprocessing import StandardScaler, OneHotEncoder
|
4 |
+
from sklearn.compose import ColumnTransformer
|
5 |
+
from sklearn.model_selection import train_test_split, RandomizedSearchCV
|
6 |
+
from sklearn.linear_model import Ridge
|
7 |
+
from sklearn.pipeline import Pipeline
|
8 |
+
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
|
9 |
+
|
10 |
+
# Read the uploaded file
|
11 |
+
df = pd.read_csv('/insurance (1).csv')
|
12 |
+
|
13 |
+
# Define the target variable
|
14 |
+
y = df['charges']
|
15 |
+
|
16 |
+
# Define the feature columns
|
17 |
+
numerical_columns = ['age', 'bmi', 'children']
|
18 |
+
categorical_columns = ['sex', 'smoker', 'region']
|
19 |
+
|
20 |
+
# Define feature matrix X
|
21 |
+
X = df[numerical_columns + categorical_columns]
|
22 |
+
|
23 |
+
# Split the data
|
24 |
+
Xtrain, Xtest, ytrain, ytest = train_test_split(
|
25 |
+
X, y,
|
26 |
+
test_size=0.2,
|
27 |
+
random_state=42
|
28 |
+
)
|
29 |
+
|
30 |
+
# Create a column transformer for preprocessing
|
31 |
+
preprocessor = ColumnTransformer(
|
32 |
+
transformers=[
|
33 |
+
('num', StandardScaler(), numerical_columns), # Standard scaling for numerical columns
|
34 |
+
('cat', OneHotEncoder(handle_unknown='ignore'), categorical_columns) # One-hot encoding for categorical columns
|
35 |
+
]
|
36 |
+
)
|
37 |
+
|
38 |
+
# Create a Ridge regression model pipeline
|
39 |
+
ridge_pipeline = Pipeline([
|
40 |
+
('preprocessor', preprocessor),
|
41 |
+
('ridge', Ridge())
|
42 |
+
])
|
43 |
+
|
44 |
+
# Define a parameter distribution for hyperparameter tuning
|
45 |
+
param_distribution = {
|
46 |
+
'ridge__alpha': [0.001, 0.01, 0.1, 0.5, 1, 5, 10]
|
47 |
+
}
|
48 |
+
|
49 |
+
# Perform hyperparameter tuning using RandomizedSearchCV
|
50 |
+
random_search = RandomizedSearchCV(ridge_pipeline, param_distribution, n_iter=5, cv=5)
|
51 |
+
random_search.fit(Xtrain, ytrain)
|
52 |
+
|
53 |
+
# Model evaluation for testing set
|
54 |
+
y_pred = random_search.best_estimator_.predict(Xtest)
|
55 |
+
|
56 |
+
mae = mean_absolute_error(ytest, y_pred)
|
57 |
+
mse = mean_squared_error(ytest, y_pred)
|
58 |
+
r2 = r2_score(ytest, y_pred)
|
59 |
+
|
60 |
+
print("The model performance for the testing set")
|
61 |
+
print("--------------------------------------")
|
62 |
+
print('MAE is {}'.format(mae))
|
63 |
+
print('MSE is {}'.format(mse))
|
64 |
+
print('R2 score is {}'.format(r2))
|
65 |
+
|
66 |
+
# Save the best model
|
67 |
+
saved_model_path = "model.joblib"
|
68 |
+
joblib.dump(random_search.best_estimator_, saved_model_path)
|