File size: 6,960 Bytes
4033df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665cea6
 
536646b
 
 
 
 
4033df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9e2557
4033df0
 
 
 
 
 
 
 
 
 
 
 
3263f1b
4033df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5181bba
4033df0
 
 
 
 
 
 
 
 
 
 
665cea6
4033df0
 
 
 
 
3263f1b
4033df0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments

"""FairytaleQA: An Authentic Dataset for Narrative Comprehension"""

import csv
import json
import os

import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@inproceedings{xu-etal-2022-fantastic,
    title = "Fantastic Questions and Where to Find Them: {F}airytale{QA} {--} An Authentic Dataset for Narrative Comprehension",
    author = "Xu, Ying  and
      Wang, Dakuo  and
      Yu, Mo  and
      Ritchie, Daniel  and
      Yao, Bingsheng  and
      Wu, Tongshuang  and
      Zhang, Zheng  and
      Li, Toby  and
      Bradford, Nora  and
      Sun, Branda  and
      Hoang, Tran  and
      Sang, Yisi  and
      Hou, Yufang  and
      Ma, Xiaojuan  and
      Yang, Diyi  and
      Peng, Nanyun  and
      Yu, Zhou  and
      Warschauer, Mark",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-long.34",
    doi = "10.18653/v1/2022.acl-long.34",
    pages = "447--460",
    abstract = "Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models{'} fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions.",
}
"""

_DESCRIPTION = """\
FairytaleQA dataset, an open-source dataset focusing on comprehension of narratives, \
targeting students from kindergarten to eighth grade. The FairytaleQA dataset is \
annotated by education experts based on an evidence-based theoretical framework. \
It consists of 10,580 explicit and implicit questions derived from 278 children-friendly \
stories, covering seven types of narrative elements or relations.
"""
# _URL = 'https://github.com/WorkInTheDark/FairytaleQA_Dataset/tree/main/huggingface_hub/'
_URL = './'
_URLS = {
    "train": _URL + "train.csv",
    "valid": _URL + "valid.csv",
    "test": _URL + "test.csv",
}

class FairytaleQAConfig(datasets.BuilderConfig):
    """BuilderConfig for FairytaleQA."""

    def __init__(self, **kwargs):
        """BuilderConfig for FairytaleQA.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(FairytaleQAConfig, self).__init__(**kwargs)

class FairytaleQA(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    BUILDER_CONFIGS = [
        FairytaleQAConfig(
            name="plain_text",
            version=datasets.Version("1.0.0", ""),
            description="Plain text",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "story_name": datasets.Value("string"),
                    "story_section": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answer1": datasets.Value("string"),
                    "answer2": datasets.Value("string"),
                    "local-or-sum": datasets.Value("string"),
                    "attribute": datasets.Value("string"),
                    "ex-or-im": datasets.Value("string"),
                    "ex-or-im2": datasets.Value("string"),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            citation=_CITATION,

        )
    
    def _split_generators(self, dl_manager):
        urls_to_download = _URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
        datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
        datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
        datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
    ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as file_obj:

            heading = next(file_obj)
            reader_obj = csv.reader(file_obj)
            key = 0
            for row in reader_obj:
                # print(row)
                story_name = row[0]
                story_section = row[1]
                question = row[2]
                answer1 = row[3]
                answer2 = row[4]
                local_or_sum = row[5]
                attribute = row[6]
                ex_or_im = row[7]
                ex_or_im2 = row[8]

                yield key, {
                    'story_name': story_name,
                    'story_section': story_section,
                    'question': question,
                    'answer1': answer1,
                    'answer2': answer2,
                    'local-or-sum': local_or_sum,
                    'attribute': attribute,
                    'ex-or-im': ex_or_im,
                    'ex-or-im2': ex_or_im2,
                }
                key += 1