File size: 9,966 Bytes
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce34b11
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26007fc
befa200
 
850cf0d
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26007fc
 
 
 
850cf0d
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26007fc
 
 
 
 
 
 
 
 
 
3aac9db
 
 
850cf0d
 
 
 
3aac9db
 
 
 
 
 
 
3659aa8
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d2c20d
 
3aac9db
850cf0d
 
3aac9db
 
 
 
 
 
 
 
 
 
 
 
7d2c20d
 
850cf0d
 
 
 
 
 
 
 
 
 
7d2c20d
3aac9db
 
 
 
 
 
 
 
 
 
 
 
 
 
55c3bf1
 
01034fb
55c3bf1
 
 
 
 
 
26007fc
 
850cf0d
 
26007fc
3aac9db
 
 
 
82e713d
3aac9db
82e713d
 
3aac9db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""

import datasets
import json
import ast

_CITATION = """\
@ARTICLE{10174688,
  author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
  title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding},
  year={2023},
  volume={},
  number={},
  pages={1-16},
  doi={10.1109/TASLP.2023.3293046}}
"""

_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""

_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"

_LICENSE = (
    "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)

_URLS = {
    "logiqa2": {
        "train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/train.txt",
        "validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/dev.txt",
        "test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/test.txt",
    },
    "logiqa2_zh": {
        "train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/train_zh.txt",
        "validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/dev_zh.txt",
        "test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa/DATA/LOGIQA/test_zh.txt",
    },
    "logiqa2_nli": {
        "train": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/train.txt",
        "validation": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/dev.txt",
        "test": "https://raw.githubusercontent.com/csitfun/LogiQA2.0/main/logiqa2nli/DATA/QA2NLI/test.txt",
    },
    "logieval": {
        "train": "https://raw.githubusercontent.com/csitfun/LogiEval/main/Data/logiqa_ood.jsonl",
        "test": "https://raw.githubusercontent.com/csitfun/LogiEval/main/Data/logiqa.jsonl",
    },
}


class LogiQA2(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("2.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="logiqa2",
            version=VERSION,
            description="The LogiQA multiple answer dataset translated in English from Chinese.",
        ),
        datasets.BuilderConfig(
            name="logiqa2_zh",
            version=VERSION,
            description="The original LogiQA multiple answer dataset in Chinese.",
        ),
        datasets.BuilderConfig(
            name="logiqa2_nli",
            version=VERSION,
            description="The NLI part of LogiQA2.0 dataset",
        ),
        datasets.BuilderConfig(
            name="logieval",
            version=VERSION,
            description="Instruction based MRC task",
        ),
    ]
    DEFAULT_CONFIG_NAME = "logiqa2"

    def _info(self):

        if self.config.name == "logiqa2_zh":
            features = datasets.Features(
                {
                    "answer": datasets.Value("int32"),
                    "text": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "options": datasets.features.Sequence(datasets.Value("string")),
                }
            )
        #  # major_premise (maybe minor) is sometimes str, sometimes list
        #  # can't get it to work.
        elif self.config.name == "logiqa2_nli":
            features = datasets.Features(
                {
                    "label": datasets.ClassLabel(
                        num_classes=2,
                        names=["not entailed", "entailed"],
                        names_file=None,
                        id=None,
                    ),
                    "major_premise": datasets.features.Sequence(
                        datasets.Value("string")
                    ),
                    "minor_premise": datasets.Value("string"),
                    "conclusion": datasets.Value("string"),
                }
            )
        elif self.config.name in ("logiqa2_nli", "logieval"):
            features = datasets.Features(
                {"content": datasets.Value("string"), "ideal": datasets.Value("string")}
            )
        else:
            features = datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "answer": datasets.Value("int32"),
                    "text": datasets.Value("string"),
                    # "type" is a dict with arbitrary keys and values
                    "type": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "options": datasets.features.Sequence(datasets.Value("string")),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        _urls = _URLS[self.config.name]
        urls = {
            "train": _urls["train"],
            "test": _urls["test"],
        }
        if "validation" in _urls:
            urls["validation"] = _urls["validation"]
        data_dir = dl_manager.download_and_extract(urls)
        splits = [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": data_dir["test"], "split": "test"},
            ),
        ]
        if "validation" in _urls:
            splits.append(
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    # These kwargs will be passed to _generate_examples
                    gen_kwargs={
                        "filepath": data_dir["validation"],
                        "split": "validation",
                    },
                )
            )
        return splits

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)

                if self.config.name == "logiqa2_zh":
                    yield key, {
                        "answer": data["answer"],
                        "text": data["text"],
                        "question": data["question"],
                        "options": data["options"],
                    }
                elif self.config.name == "logiqa2_nli":
                    if isinstance(data["major_premise"], str):
                        data["major_premise"] = [data["major_premise"]]
                    data["minor_premise"] = data["minor_premise"].strip()
                    yield key, {
                        "label": data["label"],
                        "major_premise": data["major_premise"],
                        "minor_premise": data["minor_premise"],
                        "conclusion": data["conclusion"],
                    }
                elif self.config.name == "logieval":
                    yield key, {
                        "content": data["input"][1]["content"],
                        "ideal": data["ideal"],
                    }
                else:
                    yield key, {
                        "id": data["id"],
                        "answer": data["answer"],
                        "text": data["text"].strip(),
                        "type": data["type"],
                        "question": data["question"].strip(),
                        "options": [x.strip() for x in data["options"]],
                    }