|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Language Model 1 Billion dataset.""" |
|
|
|
|
|
import os |
|
from fnmatch import fnmatch |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/ChelbaMSGBK13, |
|
author = {Ciprian Chelba and |
|
Tomas Mikolov and |
|
Mike Schuster and |
|
Qi Ge and |
|
Thorsten Brants and |
|
Phillipp Koehn}, |
|
title = {One Billion Word Benchmark for Measuring Progress in Statistical Language |
|
Modeling}, |
|
journal = {CoRR}, |
|
volume = {abs/1312.3005}, |
|
year = {2013}, |
|
url = {http://arxiv.org/abs/1312.3005}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1312.3005}, |
|
timestamp = {Mon, 13 Aug 2018 16:46:16 +0200}, |
|
biburl = {https://dblp.org/rec/bib/journals/corr/ChelbaMSGBK13}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A benchmark corpus to be used for measuring progress in statistical language \ |
|
modeling. This has almost one billion words in the training data. |
|
""" |
|
|
|
_DOWNLOAD_URL = "http://www.statmt.org/lm-benchmark/" "1-billion-word-language-modeling-benchmark-r13output.tar.gz" |
|
_TOP_LEVEL_DIR = "1-billion-word-language-modeling-benchmark-r13output" |
|
_TRAIN_FILE_FORMAT = "/".join([_TOP_LEVEL_DIR, "training-monolingual.tokenized.shuffled", "news.en-*"]) |
|
_HELDOUT_FILE_FORMAT = "/".join([_TOP_LEVEL_DIR, "heldout-monolingual.tokenized.shuffled", "news.en.heldout-*"]) |
|
|
|
|
|
class Lm1bConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Lm1b.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Lm1b. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Lm1bConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
|
|
|
|
class Lm1b(datasets.GeneratorBasedBuilder): |
|
"""1 Billion Word Language Model Benchmark dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Lm1bConfig( |
|
name="plain_text", |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({"text": datasets.Value("string")}), |
|
supervised_keys=("text", "text"), |
|
homepage="http://www.statmt.org/lm-benchmark/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive = dl_manager.download(_DOWNLOAD_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"files": dl_manager.iter_archive(archive), "pattern": _TRAIN_FILE_FORMAT}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"files": dl_manager.iter_archive(archive), "pattern": _HELDOUT_FILE_FORMAT}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files, pattern): |
|
for path, f in files: |
|
if fnmatch(path, pattern): |
|
for idx, line in enumerate(f): |
|
yield "%s_%d" % (os.path.basename(path), idx), { |
|
"text": line.decode("utf-8").strip(), |
|
} |
|
|