blanchon commited on
Commit
486dc1c
1 Parent(s): 0f285ae

🤗 Add DatasetCard

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: unknown
4
+ task_categories:
5
+ - image-classification
6
+ paperswithcode_id: patternnet
7
+ pretty_name: PatternNet
8
+ tags:
9
+ - remote-sensing
10
+ - earth-observation
11
+ - geospatial
12
+ - satellite-imagery
13
+ - land-cover-classification
14
+ - google-earth
15
+ ---
16
+
17
+ # PatternNet
18
+
19
+ <!-- Dataset thumbnail -->
20
+ ![PatternNet](./thumbnail.jpg)
21
+
22
+ <!-- Provide a quick summary of the dataset. -->
23
+ The PatternNet dataset is a dataset for remote sensing scene classification and image retrieval.
24
+ - **Paper:** https://arxiv.org/abs/1703.06339
25
+ - **Homepage:** https://sites.google.com/view/zhouwx/dataset
26
+
27
+ ## Description
28
+
29
+ <!-- Provide a longer summary of what this dataset is. -->
30
+
31
+ PatternNet is a large-scale high-resolution remote sensing dataset collected for remote sensing image retrieval. There are 38 classes and each class has 800 images of size 256×256 pixels. The images in PatternNet are collected from Google Earth imagery or via the Google Map API for some US cities. The following table shows the classes and the corresponding spatial resolutions. The figure shows some example images from each class.
32
+
33
+ - **Total Number of Images**: 30400
34
+ - **Bands**: 3 (RGB)
35
+ - **Image Resolution**: 256x256m
36
+ - **Land Cover Classes**: 38
37
+ - Classes: airplane, baseball_field, basketball_court, beach, bridge, cemetery, chaparral, christmas_tree_farm, closed_road, coastal_mansion, crosswalk, dense_residential, ferry_terminal, football_field, forest, freeway, golf_course, harbor, intersection, mobile_home_park, nursing_home, oil_gas_field, oil_well, overpass, parking_lot, parking_space, railway, river, runway, runway_marking, shipping_yard, solar_panel, sparse_residential, storage_tank, swimming_pool, tennis_court, transformer_station, wastewater_treatment_plant
38
+
39
+
40
+ ## Usage
41
+
42
+ To use this dataset, simply use `datasets.load_dataset("blanchon/PatternNet")`.
43
+ <!-- Provide any additional information on how to use this dataset. -->
44
+ ```python
45
+ from datasets import load_dataset
46
+ PatternNet = load_dataset("blanchon/PatternNet")
47
+ ```
48
+
49
+ ## Citation
50
+
51
+ <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
52
+ If you use the EuroSAT dataset in your research, please consider citing the following publication:
53
+
54
+
55
+ ```bibtex
56
+ @article{li2017patternnet,
57
+ title = {PatternNet: Visual Pattern Mining with Deep Neural Network},
58
+ author = {Hongzhi Li and Joseph G. Ellis and Lei Zhang and Shih-Fu Chang},
59
+ journal = {International Conference on Multimedia Retrieval},
60
+ year = {2017},
61
+ doi = {10.1145/3206025.3206039},
62
+ bibSource = {Semantic Scholar https://www.semanticscholar.org/paper/e7c75e485651bf3ccf37dd8dd39f6665419d73bd}
63
+ }
64
+ ```