Datasets:

Languages:
English
ArXiv:
License:
tweet_topic_multi / lm_finetuning.py
asahi417's picture
Update lm_finetuning.py
8b720cd
'''
wandb offline
export WANDB_DISABLED='true'
export RAY_RESULTS='ray_results'
python lm_finetuning.py -m "roberta-large" -o "ckpt/2021/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "roberta-large" -o "ckpt/2020/roberta-large" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-large-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
python lm_finetuning.py -m "roberta-base" -o "ckpt/2021/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "roberta-base" -o "ckpt/2020/roberta_base" --push-to-hub --hf-organization "cardiffnlp" -a "roberta-base-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2021/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-2019-90m" -o "ckpt/2020/twitter-roberta-base-2019-90m" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-2019-90m-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2021/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2020" -o "ckpt/2020/twitter-roberta-base-dec2020" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2020-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2021/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-multi-all" --split-train "train_all" --split-valid "validation_2021" --split-test "test_2021"
python lm_finetuning.py -m "cardiffnlp/twitter-roberta-base-dec2021" -o "ckpt/2020/twitter-roberta-base-dec2021" --push-to-hub --hf-organization "cardiffnlp" -a "twitter-roberta-base-dec2021-tweet-topic-multi-2020" --split-train "train_2020" --split-valid "validation_2020" --split-test "test_2021"
'''
import argparse
import json
import logging
import os
import math
import shutil
import urllib.request
import multiprocessing
from os.path import join as pj
import torch
import numpy as np
from huggingface_hub import create_repo
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from ray import tune
from readme import get_readme
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
PARALLEL = bool(int(os.getenv("PARALLEL", 1)))
RAY_RESULTS = os.getenv("RAY_RESULTS", "ray_results")
LABEL2ID = {
"arts_&_culture": 0,
"business_&_entrepreneurs": 1,
"celebrity_&_pop_culture": 2,
"diaries_&_daily_life": 3,
"family": 4,
"fashion_&_style": 5,
"film_tv_&_video": 6,
"fitness_&_health": 7,
"food_&_dining": 8,
"gaming": 9,
"learning_&_educational": 10,
"music": 11,
"news_&_social_concern": 12,
"other_hobbies": 13,
"relationships": 14,
"science_&_technology": 15,
"sports": 16,
"travel_&_adventure": 17,
"youth_&_student_life": 18
}
ID2LABEL = {v: k for k, v in LABEL2ID.items()}
def internet_connection(host='http://google.com'):
try:
urllib.request.urlopen(host)
return True
except:
return False
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def get_metrics():
metric_accuracy = load_metric("accuracy", "multilabel")
metric_f1 = load_metric("f1", "multilabel")
# metric_f1.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]], average='micro')
# metric_accuracy.compute(predictions=[[0, 1, 1], [1, 1, 0]], references=[[0, 1, 1], [0, 1, 0]])
def compute_metric_search(eval_pred):
logits, labels = eval_pred
predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits])
return metric_f1.compute(predictions=predictions, references=labels, average='micro')
def compute_metric_all(eval_pred):
logits, labels = eval_pred
predictions = np.array([[int(sigmoid(j) > 0.5) for j in i] for i in logits])
return {
'f1': metric_f1.compute(predictions=predictions, references=labels, average='micro')['f1'],
'f1_macro': metric_f1.compute(predictions=predictions, references=labels, average='macro')['f1'],
'accuracy': metric_accuracy.compute(predictions=predictions, references=labels)['accuracy']
}
return compute_metric_search, compute_metric_all
def main():
parser = argparse.ArgumentParser(description='Fine-tuning language model.')
parser.add_argument('-m', '--model', help='transformer LM', default='roberta-base', type=str)
parser.add_argument('-d', '--dataset', help='', default='cardiffnlp/tweet_topic_multi', type=str)
parser.add_argument('--split-train', help='', required=True, type=str)
parser.add_argument('--split-validation', help='', required=True, type=str)
parser.add_argument('--split-test', help='', required=True, type=str)
parser.add_argument('-l', '--seq-length', help='', default=128, type=int)
parser.add_argument('--random-seed', help='', default=42, type=int)
parser.add_argument('--eval-step', help='', default=50, type=int)
parser.add_argument('-o', '--output-dir', help='Directory to output', default='ckpt_tmp', type=str)
parser.add_argument('-t', '--n-trials', default=10, type=int)
parser.add_argument('--push-to-hub', action='store_true')
parser.add_argument('--use-auth-token', action='store_true')
parser.add_argument('--hf-organization', default=None, type=str)
parser.add_argument('-a', '--model-alias', help='', default=None, type=str)
parser.add_argument('--summary-file', default='metric_summary.json', type=str)
parser.add_argument('--skip-train', action='store_true')
parser.add_argument('--skip-eval', action='store_true')
opt = parser.parse_args()
assert opt.summary_file.endswith('.json'), f'`--summary-file` should be a json file {opt.summary_file}'
# setup data
dataset = load_dataset(opt.dataset)
network = internet_connection()
# setup model
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
model = AutoModelForSequenceClassification.from_pretrained(
opt.model,
id2label=ID2LABEL,
label2id=LABEL2ID,
num_labels=len(dataset[opt.split_train]['label'][0]),
local_files_only=not network,
problem_type="multi_label_classification"
)
tokenized_datasets = dataset.map(
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
batched=True)
# setup metrics
compute_metric_search, compute_metric_all = get_metrics()
if not opt.skip_train:
# setup trainer
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="steps",
eval_steps=opt.eval_step,
seed=opt.random_seed
),
train_dataset=tokenized_datasets[opt.split_train],
eval_dataset=tokenized_datasets[opt.split_validation],
compute_metrics=compute_metric_search,
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
opt.model,
return_dict=True,
num_labels=len(dataset[opt.split_train]['label'][0]),
id2label=ID2LABEL,
label2id=LABEL2ID
)
)
# parameter search
if PARALLEL:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials,
resources_per_trial={'cpu': multiprocessing.cpu_count(), "gpu": torch.cuda.device_count()},
)
else:
best_run = trainer.hyperparameter_search(
hp_space=lambda x: {
"learning_rate": tune.loguniform(1e-6, 1e-4),
"num_train_epochs": tune.choice(list(range(1, 6))),
"per_device_train_batch_size": tune.choice([4, 8, 16, 32, 64]),
},
local_dir=RAY_RESULTS, direction="maximize", backend="ray", n_trials=opt.n_trials
)
# finetuning
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
trainer.train()
trainer.save_model(pj(opt.output_dir, 'best_model'))
best_model_path = pj(opt.output_dir, 'best_model')
else:
best_model_path = pj(opt.output_dir, 'best_model')
# evaluation
model = AutoModelForSequenceClassification.from_pretrained(
best_model_path,
num_labels=len(dataset[opt.split_train]['label'][0]),
local_files_only=not network,
problem_type="multi_label_classification",
id2label=ID2LABEL,
label2id=LABEL2ID
)
trainer = Trainer(
model=model,
args=TrainingArguments(
output_dir=opt.output_dir,
evaluation_strategy="no",
seed=opt.random_seed
),
train_dataset=tokenized_datasets[opt.split_train],
eval_dataset=tokenized_datasets[opt.split_test],
compute_metrics=compute_metric_all
)
summary_file = pj(opt.output_dir, opt.summary_file)
if not opt.skip_eval:
result = {f'test/{k}': v for k, v in trainer.evaluate().items()}
logging.info(json.dumps(result, indent=4))
with open(summary_file, 'w') as f:
json.dump(result, f)
if opt.push_to_hub:
assert opt.hf_organization is not None, f'specify hf organization `--hf-organization`'
assert opt.model_alias is not None, f'specify hf organization `--model-alias`'
url = create_repo(opt.model_alias, organization=opt.hf_organization, exist_ok=True)
# if not opt.skip_train:
args = {"use_auth_token": opt.use_auth_token, "repo_url": url, "organization": opt.hf_organization}
trainer.model.push_to_hub(opt.model_alias, **args)
tokenizer.push_to_hub(opt.model_alias, **args)
if os.path.exists(summary_file):
shutil.copy2(summary_file, opt.model_alias)
extra_desc = f"This model is fine-tuned on `{opt.split_train}` split and validated on `{opt.split_test}` split of tweet_topic."
readme = get_readme(
model_name=f"{opt.hf_organization}/{opt.model_alias}",
metric=summary_file,
language_model=opt.model,
extra_desc= extra_desc
)
with open(f"{opt.model_alias}/README.md", "w") as f:
f.write(readme)
os.system(
f"cd {opt.model_alias} && git lfs install && git add . && git commit -m 'model update' && git push && cd ../")
shutil.rmtree(f"{opt.model_alias}") # clean up the cloned repo
if __name__ == '__main__':
main()