Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
5f0221d
1 Parent(s): 60b610a

Update lm_finetuning.py

Browse files
Files changed (1) hide show
  1. lm_finetuning.py +3 -3
lm_finetuning.py CHANGED
@@ -118,7 +118,7 @@ def main():
118
  eval_dataset=tokenized_datasets[opt.split_validation],
119
  compute_metrics=compute_metric_search,
120
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
121
- opt.model, return_dict=True, num_labels=len(data[opt.split_train]['label'][0]))
122
  )
123
  # parameter search
124
  if PARALLEL:
@@ -153,7 +153,7 @@ def main():
153
  # evaluation
154
  model = AutoModelForSequenceClassification.from_pretrained(
155
  best_model_path,
156
- num_labels=len(data[opt.split_train]['label'][0]),
157
  local_files_only=not network)
158
  trainer = Trainer(
159
  model=model,
@@ -166,7 +166,7 @@ def main():
166
  eval_dataset=tokenized_datasets[opt.split_test],
167
  compute_metrics=compute_metric_all,
168
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
169
- opt.model, return_dict=True, num_labels=len(data[opt.split_train]['label'][0]))
170
  )
171
  summary_file = pj(opt.output_dir, opt.summary_file)
172
  if not opt.skip_eval:
 
118
  eval_dataset=tokenized_datasets[opt.split_validation],
119
  compute_metrics=compute_metric_search,
120
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
121
+ opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]))
122
  )
123
  # parameter search
124
  if PARALLEL:
 
153
  # evaluation
154
  model = AutoModelForSequenceClassification.from_pretrained(
155
  best_model_path,
156
+ num_labels=len(dataset[opt.split_train]['label'][0]),
157
  local_files_only=not network)
158
  trainer = Trainer(
159
  model=model,
 
166
  eval_dataset=tokenized_datasets[opt.split_test],
167
  compute_metrics=compute_metric_all,
168
  model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
169
+ opt.model, return_dict=True, num_labels=len(dataset[opt.split_train]['label'][0]))
170
  )
171
  summary_file = pj(opt.output_dir, opt.summary_file)
172
  if not opt.skip_eval: