import json import os import datasets from datasets.tasks import TextClassification _DESCRIPTION = """ GovReport dataset for summarization. From paper: Efficient Attentions for Long Document Summarization" by L. Huang et al. See: https://arxiv.org/pdf/2104.02112.pdf See: https://github.com/luyang-huang96/LongDocSum """ _CITATION = """\ @misc{huang2021efficient, title={Efficient Attentions for Long Document Summarization}, author={Luyang Huang and Shuyang Cao and Nikolaus Parulian and Heng Ji and Lu Wang}, year={2021}, eprint={2104.02112}, archivePrefix={arXiv}, primaryClass={cs.CL} } } """ _ABSTRACT = "summary" _ARTICLE = "report" class GovReportSummarizationConfig(datasets.BuilderConfig): """BuilderConfig for GovReportSummarization.""" def __init__(self, **kwargs): """BuilderConfig for GovReportSummarization. Args: **kwargs: keyword arguments forwarded to super. """ super(GovReportSummarizationConfig, self).__init__(**kwargs) class GovReportSummarizationDataset(datasets.GeneratorBasedBuilder): """GovReportSummarization Dataset.""" _TRAIN_FILE = "train.zip" _VAL_FILE = "valid.zip" _TEST_FILE = "test.zip" BUILDER_CONFIGS = [ GovReportSummarizationConfig( name="document", version=datasets.Version("1.0.0"), description="GovReport dataset for summarization, document", ), ] DEFAULT_CONFIG_NAME = "document" def _info(self): # Should return a datasets.DatasetInfo object return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { _ARTICLE: datasets.Value("string"), _ABSTRACT: datasets.Value("string"), #"id": datasets.Value("string"), } ), supervised_keys=None, homepage="https://github.com/luyang-huang96/LongDocSum", citation=_CITATION, ) def _split_generators(self, dl_manager): train_path = os.path.join(dl_manager.download_and_extract(self._TRAIN_FILE), "train.txt") val_path = os.path.join(dl_manager.download_and_extract(self._VAL_FILE), "valid.txt") test_path = os.path.join(dl_manager.download_and_extract(self._TEST_FILE), "test.txt") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path} ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} ), ] def _generate_examples(self, filepath): """Generate GovReportSummarization examples.""" with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): data = json.loads(row) report = data["report"] summary = data["summary"] yield id_, {"report": report, "summary": summary}