--- license: cc-by-nc-4.0 pretty_name: imagenet3d extra_gated_fields: Name: text Affiliation: text --- ## ImageNet3D Refer to [github.com/wufeim/imagenet3d](https://github.com/wufeim/imagenet3d) for the full documentation and sample preprocessing code for ImageNet3D. ### Download Data Directly download from the HuggingFace WebUI, or on a server, run ```py from huggingface_hub import hf_hub_download local_path = '/your/local/directory' hf_hub_download(repo_id='ccvl/ImageNet3D', repo_type='dataset', filename='imagenet3d_0409.zip', local_dir=local_path, local_dir_use_symlinks=False) ``` ### Example Usage ```py from PIL import Image import numpy as np img_path = 'imagenet3d/bed/n02818832_13.JPEG' annot_path = 'imagenet3d/bed/n02818832_13.npz' img = np.array(Image.open(img_path).convert('RGB')) annot = dict(np.load(annot_path, allow_pickle=True))['annotations'] # Number of objects num_objects = len(annot) # Annotation of the first object azimuth = annot[0]['azimuth'] # float, [0, 2*pi] elevation = annot[0]['elevation'] # float, [0, 2*pi] theta = annot[0]['theta'] # float, [0, 2*pi] cad_index = annot[0]['cad_index'] # int distance = annot[0]['distance'] # float viewport = annot[0]['viewport'] # int img_height = annot[0]['height'] # numpy.uint16 img_width = annot[0]['width'] # numpy.uint16 bbox = annot[0]['bbox'] # numpy.ndarray, (x1, y1, x2, y2) category = annot[0]['class'] # str principal_x = annot[0]['px'] # float principal_y = annot[0]['py'] # float # label indicating the quality of the object, occluded or low quality object_status = annot[0]['object_status'] # str, one of ('status_good', 'status_partially', 'status_barely', 'status_bad') # label indicating if multiple objects from same category very close to each other dense = annot[0]['dense'] # str, one of ('dense_yes', 'dense_no') ```