Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
6dbbfc6
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - crowdsourced
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - cc-by-3-0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - intent-classification
20
+ ---
21
+
22
+ # Dataset Card for [Dataset Name]
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:** [Github](https://github.com/clinc/oos-eval/)
50
+ - **Repository:** [Github](https://github.com/clinc/oos-eval/)
51
+ - **Paper:** [Aclweb](https://www.aclweb.org/anthology/D19-1131)
52
+ - **Leaderboard:**
53
+ - **Point of Contact:**
54
+
55
+ ### Dataset Summary
56
+
57
+ [More Information Needed]
58
+
59
+ ### Supported Tasks and Leaderboards
60
+
61
+ [More Information Needed]
62
+
63
+ ### Languages
64
+
65
+ [More Information Needed]
66
+
67
+ ## Dataset Structure
68
+
69
+ ### Data Instances
70
+
71
+ [More Information Needed]
72
+
73
+ ### Data Fields
74
+
75
+ [More Information Needed]
76
+
77
+ ### Data Splits
78
+
79
+ [More Information Needed]
80
+
81
+ ## Dataset Creation
82
+
83
+ ### Curation Rationale
84
+
85
+ [More Information Needed]
86
+
87
+ ### Source Data
88
+
89
+ #### Initial Data Collection and Normalization
90
+
91
+ [More Information Needed]
92
+
93
+ #### Who are the source language producers?
94
+
95
+ [More Information Needed]
96
+
97
+ ### Annotations
98
+
99
+ #### Annotation process
100
+
101
+ [More Information Needed]
102
+
103
+ #### Who are the annotators?
104
+
105
+ [More Information Needed]
106
+
107
+ ### Personal and Sensitive Information
108
+
109
+ [More Information Needed]
110
+
111
+ ## Considerations for Using the Data
112
+
113
+ ### Social Impact of Dataset
114
+
115
+ [More Information Needed]
116
+
117
+ ### Discussion of Biases
118
+
119
+ [More Information Needed]
120
+
121
+ ### Other Known Limitations
122
+
123
+ [More Information Needed]
124
+
125
+ ## Additional Information
126
+
127
+ ### Dataset Curators
128
+
129
+ [More Information Needed]
130
+
131
+ ### Licensing Information
132
+
133
+ [More Information Needed]
134
+
135
+ ### Citation Information
136
+
137
+ [More Information Needed]
clinc_oos.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction"""
2
+
3
+ from __future__ import absolute_import, division, print_function
4
+
5
+ import json
6
+ import textwrap
7
+
8
+ import datasets
9
+
10
+
11
+ _CITATION = """\
12
+ @inproceedings{larson-etal-2019-evaluation,
13
+ title = "An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction",
14
+ author = "Larson, Stefan and
15
+ Mahendran, Anish and
16
+ Peper, Joseph J. and
17
+ Clarke, Christopher and
18
+ Lee, Andrew and
19
+ Hill, Parker and
20
+ Kummerfeld, Jonathan K. and
21
+ Leach, Kevin and
22
+ Laurenzano, Michael A. and
23
+ Tang, Lingjia and
24
+ Mars, Jason",
25
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
26
+ year = "2019",
27
+ url = "https://www.aclweb.org/anthology/D19-1131"
28
+ }
29
+ """
30
+
31
+ _DESCRIPTION = """\
32
+ This dataset is for evaluating the performance of intent classification systems in the
33
+ presence of "out-of-scope" queries. By "out-of-scope", we mean queries that do not fall
34
+ into any of the system-supported intent classes. Most datasets include only data that is
35
+ "in-scope". Our dataset includes both in-scope and out-of-scope data. You might also know
36
+ the term "out-of-scope" by other terms, including "out-of-domain" or "out-of-distribution".
37
+ """
38
+
39
+ _DESCRIPTIONS = {
40
+ "small": textwrap.dedent(
41
+ """\
42
+ Small, in which there are only 50 training queries per each in-scope intent
43
+ """
44
+ ),
45
+ "imbalanced": textwrap.dedent(
46
+ """\
47
+ Imbalanced, in which intents have either 25, 50, 75, or 100 training queries.
48
+ """
49
+ ),
50
+ "plus": textwrap.dedent(
51
+ """\
52
+ OOS+, in which there are 250 out-of-scope training examples, rather than 100.
53
+ """
54
+ ),
55
+ }
56
+
57
+ _URL = "https://github.com/clinc/oos-eval/"
58
+
59
+ _DATA_URLS = {
60
+ "small": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json",
61
+ "imbalanced": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json",
62
+ "plus": "https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json",
63
+ }
64
+
65
+
66
+ class ClincConfig(datasets.BuilderConfig):
67
+
68
+ """BuilderConfig for CLINC150"""
69
+
70
+ def __init__(self, description, data_url, citation, url, **kwrags):
71
+ """
72
+ Args:
73
+ description: `string`, brief description of the dataset
74
+ data_url: `dictionary`, dict with url for each split of data.
75
+ citation: `string`, citation for the dataset.
76
+ url: `string`, url for information about the dataset.
77
+ **kwrags: keyword arguments frowarded to super
78
+ """
79
+ super(ClincConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwrags)
80
+ self.description = description
81
+ self.data_url = data_url
82
+ self.citation = citation
83
+ self.url = url
84
+
85
+
86
+ class ClincOos(datasets.GeneratorBasedBuilder):
87
+ BUILDER_CONFIGS = [
88
+ ClincConfig(
89
+ name=name, description=_DESCRIPTIONS[name], data_url=_DATA_URLS[name], citation=_CITATION, url=_URL
90
+ )
91
+ for name in ["small", "imbalanced", "plus"]
92
+ ]
93
+
94
+ def _info(self):
95
+ features = {}
96
+ features["text"] = datasets.Value("string")
97
+ labels_list = [
98
+ "restaurant_reviews",
99
+ "nutrition_info",
100
+ "account_blocked",
101
+ "oil_change_how",
102
+ "time",
103
+ "weather",
104
+ "redeem_rewards",
105
+ "interest_rate",
106
+ "gas_type",
107
+ "accept_reservations",
108
+ "smart_home",
109
+ "user_name",
110
+ "report_lost_card",
111
+ "repeat",
112
+ "whisper_mode",
113
+ "what_are_your_hobbies",
114
+ "order",
115
+ "jump_start",
116
+ "schedule_meeting",
117
+ "meeting_schedule",
118
+ "freeze_account",
119
+ "what_song",
120
+ "meaning_of_life",
121
+ "restaurant_reservation",
122
+ "traffic",
123
+ "make_call",
124
+ "text",
125
+ "bill_balance",
126
+ "improve_credit_score",
127
+ "change_language",
128
+ "no",
129
+ "measurement_conversion",
130
+ "timer",
131
+ "flip_coin",
132
+ "do_you_have_pets",
133
+ "balance",
134
+ "tell_joke",
135
+ "last_maintenance",
136
+ "exchange_rate",
137
+ "uber",
138
+ "car_rental",
139
+ "credit_limit",
140
+ "oos",
141
+ "shopping_list",
142
+ "expiration_date",
143
+ "routing",
144
+ "meal_suggestion",
145
+ "tire_change",
146
+ "todo_list",
147
+ "card_declined",
148
+ "rewards_balance",
149
+ "change_accent",
150
+ "vaccines",
151
+ "reminder_update",
152
+ "food_last",
153
+ "change_ai_name",
154
+ "bill_due",
155
+ "who_do_you_work_for",
156
+ "share_location",
157
+ "international_visa",
158
+ "calendar",
159
+ "translate",
160
+ "carry_on",
161
+ "book_flight",
162
+ "insurance_change",
163
+ "todo_list_update",
164
+ "timezone",
165
+ "cancel_reservation",
166
+ "transactions",
167
+ "credit_score",
168
+ "report_fraud",
169
+ "spending_history",
170
+ "directions",
171
+ "spelling",
172
+ "insurance",
173
+ "what_is_your_name",
174
+ "reminder",
175
+ "where_are_you_from",
176
+ "distance",
177
+ "payday",
178
+ "flight_status",
179
+ "find_phone",
180
+ "greeting",
181
+ "alarm",
182
+ "order_status",
183
+ "confirm_reservation",
184
+ "cook_time",
185
+ "damaged_card",
186
+ "reset_settings",
187
+ "pin_change",
188
+ "replacement_card_duration",
189
+ "new_card",
190
+ "roll_dice",
191
+ "income",
192
+ "taxes",
193
+ "date",
194
+ "who_made_you",
195
+ "pto_request",
196
+ "tire_pressure",
197
+ "how_old_are_you",
198
+ "rollover_401k",
199
+ "pto_request_status",
200
+ "how_busy",
201
+ "application_status",
202
+ "recipe",
203
+ "calendar_update",
204
+ "play_music",
205
+ "yes",
206
+ "direct_deposit",
207
+ "credit_limit_change",
208
+ "gas",
209
+ "pay_bill",
210
+ "ingredients_list",
211
+ "lost_luggage",
212
+ "goodbye",
213
+ "what_can_i_ask_you",
214
+ "book_hotel",
215
+ "are_you_a_bot",
216
+ "next_song",
217
+ "change_speed",
218
+ "plug_type",
219
+ "maybe",
220
+ "w2",
221
+ "oil_change_when",
222
+ "thank_you",
223
+ "shopping_list_update",
224
+ "pto_balance",
225
+ "order_checks",
226
+ "travel_alert",
227
+ "fun_fact",
228
+ "sync_device",
229
+ "schedule_maintenance",
230
+ "apr",
231
+ "transfer",
232
+ "ingredient_substitution",
233
+ "calories",
234
+ "current_location",
235
+ "international_fees",
236
+ "calculator",
237
+ "definition",
238
+ "next_holiday",
239
+ "update_playlist",
240
+ "mpg",
241
+ "min_payment",
242
+ "change_user_name",
243
+ "restaurant_suggestion",
244
+ "travel_notification",
245
+ "cancel",
246
+ "pto_used",
247
+ "travel_suggestion",
248
+ "change_volume",
249
+ ]
250
+ features["intent"] = datasets.ClassLabel(names=labels_list)
251
+
252
+ return datasets.DatasetInfo(
253
+ description=_DESCRIPTION + "\n" + self.config.description,
254
+ features=datasets.Features(features),
255
+ homepage=self.config.url,
256
+ citation=_CITATION,
257
+ )
258
+
259
+ def _split_generators(self, dl_manager):
260
+ file_ = dl_manager.download_and_extract(self.config.data_url)
261
+
262
+ return [
263
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_, "split": "train"}),
264
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": file_, "split": "val"}),
265
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": file_, "split": "test"}),
266
+ ]
267
+
268
+ def _generate_examples(self, filepath, split):
269
+ with open(filepath, encoding="utf-8") as f:
270
+ j = json.load(f)
271
+ for id_, row in enumerate(j[split] + j["oos_" + split]):
272
+ yield id_, {"text": row[0], "intent": row[1]}
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"small": {"description": " This dataset is for evaluating the performance of intent classification systems in the\n presence of \"out-of-scope\" queries. By \"out-of-scope\", we mean queries that do not fall\n into any of the system-supported intent classes. Most datasets include only data that is\n \"in-scope\". Our dataset includes both in-scope and out-of-scope data. You might also know\n the term \"out-of-scope\" by other terms, including \"out-of-domain\" or \"out-of-distribution\".\n\nSmall, in which there are only 50 training queries per each in-scope intent\n", "citation": " @inproceedings{larson-etal-2019-evaluation,\n title = \"An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction\",\n author = \"Larson, Stefan and\n Mahendran, Anish and\n Peper, Joseph J. and\n Clarke, Christopher and\n Lee, Andrew and\n Hill, Parker and\n Kummerfeld, Jonathan K. and\n Leach, Kevin and\n Laurenzano, Michael A. and\n Tang, Lingjia and\n Mars, Jason\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n year = \"2019\",\n url = \"https://www.aclweb.org/anthology/D19-1131\"\n}\n", "homepage": "https://github.com/clinc/oos-eval/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "intent": {"num_classes": 151, "names": ["restaurant_reviews", "nutrition_info", "account_blocked", "oil_change_how", "time", "weather", "redeem_rewards", "interest_rate", "gas_type", "accept_reservations", "smart_home", "user_name", "report_lost_card", "repeat", "whisper_mode", "what_are_your_hobbies", "order", "jump_start", "schedule_meeting", "meeting_schedule", "freeze_account", "what_song", "meaning_of_life", "restaurant_reservation", "traffic", "make_call", "text", "bill_balance", "improve_credit_score", "change_language", "no", "measurement_conversion", "timer", "flip_coin", "do_you_have_pets", "balance", "tell_joke", "last_maintenance", "exchange_rate", "uber", "car_rental", "credit_limit", "oos", "shopping_list", "expiration_date", "routing", "meal_suggestion", "tire_change", "todo_list", "card_declined", "rewards_balance", "change_accent", "vaccines", "reminder_update", "food_last", "change_ai_name", "bill_due", "who_do_you_work_for", "share_location", "international_visa", "calendar", "translate", "carry_on", "book_flight", "insurance_change", "todo_list_update", "timezone", "cancel_reservation", "transactions", "credit_score", "report_fraud", "spending_history", "directions", "spelling", "insurance", "what_is_your_name", "reminder", "where_are_you_from", "distance", "payday", "flight_status", "find_phone", "greeting", "alarm", "order_status", "confirm_reservation", "cook_time", "damaged_card", "reset_settings", "pin_change", "replacement_card_duration", "new_card", "roll_dice", "income", "taxes", "date", "who_made_you", "pto_request", "tire_pressure", "how_old_are_you", "rollover_401k", "pto_request_status", "how_busy", "application_status", "recipe", "calendar_update", "play_music", "yes", "direct_deposit", "credit_limit_change", "gas", "pay_bill", "ingredients_list", "lost_luggage", "goodbye", "what_can_i_ask_you", "book_hotel", "are_you_a_bot", "next_song", "change_speed", "plug_type", "maybe", "w2", "oil_change_when", "thank_you", "shopping_list_update", "pto_balance", "order_checks", "travel_alert", "fun_fact", "sync_device", "schedule_maintenance", "apr", "transfer", "ingredient_substitution", "calories", "current_location", "international_fees", "calculator", "definition", "next_holiday", "update_playlist", "mpg", "min_payment", "change_user_name", "restaurant_suggestion", "travel_notification", "cancel", "pto_used", "travel_suggestion", "change_volume"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "clinc_oos", "config_name": "small", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 394128, "num_examples": 7600, "dataset_name": "clinc_oos"}, "validation": {"name": "validation", "num_bytes": 160302, "num_examples": 3100, "dataset_name": "clinc_oos"}, "test": {"name": "test", "num_bytes": 286970, "num_examples": 5500, "dataset_name": "clinc_oos"}}, "download_checksums": {"https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_small.json": {"num_bytes": 1702451, "checksum": "050e17476e6b4fa88f8518edaf09921c8f5e3a86dc8b63615361102a20b2ac01"}}, "download_size": 1702451, "post_processing_size": null, "dataset_size": 841400, "size_in_bytes": 2543851}, "imbalanced": {"description": " This dataset is for evaluating the performance of intent classification systems in the\n presence of \"out-of-scope\" queries. By \"out-of-scope\", we mean queries that do not fall\n into any of the system-supported intent classes. Most datasets include only data that is\n \"in-scope\". Our dataset includes both in-scope and out-of-scope data. You might also know\n the term \"out-of-scope\" by other terms, including \"out-of-domain\" or \"out-of-distribution\".\n\nImbalanced, in which intents have either 25, 50, 75, or 100 training queries.\n", "citation": " @inproceedings{larson-etal-2019-evaluation,\n title = \"An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction\",\n author = \"Larson, Stefan and\n Mahendran, Anish and\n Peper, Joseph J. and\n Clarke, Christopher and\n Lee, Andrew and\n Hill, Parker and\n Kummerfeld, Jonathan K. and\n Leach, Kevin and\n Laurenzano, Michael A. and\n Tang, Lingjia and\n Mars, Jason\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n year = \"2019\",\n url = \"https://www.aclweb.org/anthology/D19-1131\"\n}\n", "homepage": "https://github.com/clinc/oos-eval/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "intent": {"num_classes": 151, "names": ["restaurant_reviews", "nutrition_info", "account_blocked", "oil_change_how", "time", "weather", "redeem_rewards", "interest_rate", "gas_type", "accept_reservations", "smart_home", "user_name", "report_lost_card", "repeat", "whisper_mode", "what_are_your_hobbies", "order", "jump_start", "schedule_meeting", "meeting_schedule", "freeze_account", "what_song", "meaning_of_life", "restaurant_reservation", "traffic", "make_call", "text", "bill_balance", "improve_credit_score", "change_language", "no", "measurement_conversion", "timer", "flip_coin", "do_you_have_pets", "balance", "tell_joke", "last_maintenance", "exchange_rate", "uber", "car_rental", "credit_limit", "oos", "shopping_list", "expiration_date", "routing", "meal_suggestion", "tire_change", "todo_list", "card_declined", "rewards_balance", "change_accent", "vaccines", "reminder_update", "food_last", "change_ai_name", "bill_due", "who_do_you_work_for", "share_location", "international_visa", "calendar", "translate", "carry_on", "book_flight", "insurance_change", "todo_list_update", "timezone", "cancel_reservation", "transactions", "credit_score", "report_fraud", "spending_history", "directions", "spelling", "insurance", "what_is_your_name", "reminder", "where_are_you_from", "distance", "payday", "flight_status", "find_phone", "greeting", "alarm", "order_status", "confirm_reservation", "cook_time", "damaged_card", "reset_settings", "pin_change", "replacement_card_duration", "new_card", "roll_dice", "income", "taxes", "date", "who_made_you", "pto_request", "tire_pressure", "how_old_are_you", "rollover_401k", "pto_request_status", "how_busy", "application_status", "recipe", "calendar_update", "play_music", "yes", "direct_deposit", "credit_limit_change", "gas", "pay_bill", "ingredients_list", "lost_luggage", "goodbye", "what_can_i_ask_you", "book_hotel", "are_you_a_bot", "next_song", "change_speed", "plug_type", "maybe", "w2", "oil_change_when", "thank_you", "shopping_list_update", "pto_balance", "order_checks", "travel_alert", "fun_fact", "sync_device", "schedule_maintenance", "apr", "transfer", "ingredient_substitution", "calories", "current_location", "international_fees", "calculator", "definition", "next_holiday", "update_playlist", "mpg", "min_payment", "change_user_name", "restaurant_suggestion", "travel_notification", "cancel", "pto_used", "travel_suggestion", "change_volume"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "clinc_oos", "config_name": "imbalanced", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 546909, "num_examples": 10625, "dataset_name": "clinc_oos"}, "validation": {"name": "validation", "num_bytes": 160302, "num_examples": 3100, "dataset_name": "clinc_oos"}, "test": {"name": "test", "num_bytes": 286970, "num_examples": 5500, "dataset_name": "clinc_oos"}}, "download_checksums": {"https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_imbalanced.json": {"num_bytes": 2016773, "checksum": "4886730b20c51eece26aa392ecae2717bfe9908680419e96255351c6148eb4cc"}}, "download_size": 2016773, "post_processing_size": null, "dataset_size": 994181, "size_in_bytes": 3010954}, "plus": {"description": " This dataset is for evaluating the performance of intent classification systems in the\n presence of \"out-of-scope\" queries. By \"out-of-scope\", we mean queries that do not fall\n into any of the system-supported intent classes. Most datasets include only data that is\n \"in-scope\". Our dataset includes both in-scope and out-of-scope data. You might also know\n the term \"out-of-scope\" by other terms, including \"out-of-domain\" or \"out-of-distribution\".\n\nOOS+, in which there are 250 out-of-scope training examples, rather than 100.\n", "citation": " @inproceedings{larson-etal-2019-evaluation,\n title = \"An Evaluation Dataset for Intent Classification and Out-of-Scope Prediction\",\n author = \"Larson, Stefan and\n Mahendran, Anish and\n Peper, Joseph J. and\n Clarke, Christopher and\n Lee, Andrew and\n Hill, Parker and\n Kummerfeld, Jonathan K. and\n Leach, Kevin and\n Laurenzano, Michael A. and\n Tang, Lingjia and\n Mars, Jason\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n year = \"2019\",\n url = \"https://www.aclweb.org/anthology/D19-1131\"\n}\n", "homepage": "https://github.com/clinc/oos-eval/", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "intent": {"num_classes": 151, "names": ["restaurant_reviews", "nutrition_info", "account_blocked", "oil_change_how", "time", "weather", "redeem_rewards", "interest_rate", "gas_type", "accept_reservations", "smart_home", "user_name", "report_lost_card", "repeat", "whisper_mode", "what_are_your_hobbies", "order", "jump_start", "schedule_meeting", "meeting_schedule", "freeze_account", "what_song", "meaning_of_life", "restaurant_reservation", "traffic", "make_call", "text", "bill_balance", "improve_credit_score", "change_language", "no", "measurement_conversion", "timer", "flip_coin", "do_you_have_pets", "balance", "tell_joke", "last_maintenance", "exchange_rate", "uber", "car_rental", "credit_limit", "oos", "shopping_list", "expiration_date", "routing", "meal_suggestion", "tire_change", "todo_list", "card_declined", "rewards_balance", "change_accent", "vaccines", "reminder_update", "food_last", "change_ai_name", "bill_due", "who_do_you_work_for", "share_location", "international_visa", "calendar", "translate", "carry_on", "book_flight", "insurance_change", "todo_list_update", "timezone", "cancel_reservation", "transactions", "credit_score", "report_fraud", "spending_history", "directions", "spelling", "insurance", "what_is_your_name", "reminder", "where_are_you_from", "distance", "payday", "flight_status", "find_phone", "greeting", "alarm", "order_status", "confirm_reservation", "cook_time", "damaged_card", "reset_settings", "pin_change", "replacement_card_duration", "new_card", "roll_dice", "income", "taxes", "date", "who_made_you", "pto_request", "tire_pressure", "how_old_are_you", "rollover_401k", "pto_request_status", "how_busy", "application_status", "recipe", "calendar_update", "play_music", "yes", "direct_deposit", "credit_limit_change", "gas", "pay_bill", "ingredients_list", "lost_luggage", "goodbye", "what_can_i_ask_you", "book_hotel", "are_you_a_bot", "next_song", "change_speed", "plug_type", "maybe", "w2", "oil_change_when", "thank_you", "shopping_list_update", "pto_balance", "order_checks", "travel_alert", "fun_fact", "sync_device", "schedule_maintenance", "apr", "transfer", "ingredient_substitution", "calories", "current_location", "international_fees", "calculator", "definition", "next_holiday", "update_playlist", "mpg", "min_payment", "change_user_name", "restaurant_suggestion", "travel_notification", "cancel", "pto_used", "travel_suggestion", "change_volume"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "clinc_oos", "config_name": "plus", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 791255, "num_examples": 15250, "dataset_name": "clinc_oos"}, "validation": {"name": "validation", "num_bytes": 160302, "num_examples": 3100, "dataset_name": "clinc_oos"}, "test": {"name": "test", "num_bytes": 286970, "num_examples": 5500, "dataset_name": "clinc_oos"}}, "download_checksums": {"https://raw.githubusercontent.com/clinc/oos-eval/master/data/data_oos_plus.json": {"num_bytes": 2509789, "checksum": "bfcca9ae515623541dc1983c94c4ed7cae9d26b42ae47d74b972e51bb6f7a21f"}}, "download_size": 2509789, "post_processing_size": null, "dataset_size": 1238527, "size_in_bytes": 3748316}}
dummy/imbalanced/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9c5252d03e3e742f19749c56cf1b7c6e7a2a96912d6f669b111ab6972c5f06b
3
+ size 970
dummy/plus/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05dd71f982257230eb7df0169e5e3b02c817279ad44f58408f4dc48a53361331
3
+ size 996
dummy/small/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:699a73135b6fbd2db2cc8b1bfa22929d9b0693b8a93a9a1c7527a4ef46d33b99
3
+ size 975