Datasets:
ArXiv:
License:
# -------------------------------------------------------- | |
# InternVL | |
# Copyright (c) 2023 OpenGVLab | |
# Licensed under The MIT License [see LICENSE for details] | |
# -------------------------------------------------------- | |
import copy | |
from transformers import AutoConfig, LlamaConfig | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
from .configuration_intern_vit import InternVisionConfig | |
from .configuration_internlm2 import InternLM2Config | |
logger = logging.get_logger(__name__) | |
class InternVLChatConfig(PretrainedConfig): | |
model_type = 'internvl_chat' | |
is_composition = True | |
def __init__( | |
self, | |
vision_config=None, | |
llm_config=None, | |
use_backbone_lora=0, | |
use_llm_lora=0, | |
select_layer=-1, | |
force_image_size=None, | |
downsample_ratio=0.5, | |
template=None, | |
dynamic_image_size=False, | |
use_thumbnail=False, | |
ps_version='v1', | |
min_dynamic_patch=1, | |
max_dynamic_patch=6, | |
**kwargs): | |
super().__init__(**kwargs) | |
if vision_config is None: | |
vision_config = {} | |
logger.info('vision_config is None. Initializing the InternVisionConfig with default values.') | |
if llm_config is None: | |
llm_config = {} | |
logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).') | |
self.vision_config = InternVisionConfig(**vision_config) | |
if llm_config['architectures'][0] == 'LlamaForCausalLM': | |
self.llm_config = LlamaConfig(**llm_config) | |
elif llm_config['architectures'][0] == 'InternLM2ForCausalLM': | |
self.llm_config = InternLM2Config(**llm_config) | |
else: | |
raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0])) | |
self.use_backbone_lora = use_backbone_lora | |
self.use_llm_lora = use_llm_lora | |
self.select_layer = select_layer | |
self.force_image_size = force_image_size | |
self.downsample_ratio = downsample_ratio | |
self.template = template | |
self.dynamic_image_size = dynamic_image_size | |
self.use_thumbnail = use_thumbnail | |
self.ps_version = ps_version # pixel shuffle version | |
self.min_dynamic_patch = min_dynamic_patch | |
self.max_dynamic_patch = max_dynamic_patch | |
logger.info(f'vision_select_layer: {self.select_layer}') | |
logger.info(f'ps_version: {self.ps_version}') | |
logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}') | |
logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}') | |
def to_dict(self): | |
""" | |
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
Returns: | |
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
""" | |
output = copy.deepcopy(self.__dict__) | |
output['vision_config'] = self.vision_config.to_dict() | |
output['llm_config'] = self.llm_config.to_dict() | |
output['model_type'] = self.__class__.model_type | |
output['use_backbone_lora'] = self.use_backbone_lora | |
output['use_llm_lora'] = self.use_llm_lora | |
output['select_layer'] = self.select_layer | |
output['force_image_size'] = self.force_image_size | |
output['downsample_ratio'] = self.downsample_ratio | |
output['template'] = self.template | |
output['dynamic_image_size'] = self.dynamic_image_size | |
output['use_thumbnail'] = self.use_thumbnail | |
output['ps_version'] = self.ps_version | |
output['min_dynamic_patch'] = self.min_dynamic_patch | |
output['max_dynamic_patch'] = self.max_dynamic_patch | |
return output | |