Datasets:
ArXiv:
License:
# Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved. | |
# | |
# This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization Fast class for InternLM.""" | |
import os | |
from shutil import copyfile | |
from typing import Any, Dict, Optional, Tuple | |
from tokenizers import Tokenizer, decoders, normalizers, processors | |
from tokenizers.models import BPE | |
from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS, | |
SentencePieceExtractor, | |
SpmConverter) | |
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | |
from transformers.utils import logging | |
from .tokenization_internlm2 import InternLM2Tokenizer | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'} | |
# Modified from transformers.convert_slow_tokenizer.LlamaConverter | |
class InternLM2Converter(SpmConverter): | |
handle_byte_fallback = True | |
def vocab(self, proto): | |
vocab = [ | |
('<unk>', 0.0), | |
('<s>', 0.0), | |
('</s>', 0.0), | |
] | |
vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]] | |
return vocab | |
def unk_id(self, proto): | |
unk_id = 0 | |
return unk_id | |
def decoder(self, replacement, add_prefix_space): | |
return decoders.Sequence( | |
[ | |
decoders.Replace('β', ' '), | |
decoders.ByteFallback(), | |
decoders.Fuse(), | |
decoders.Strip(content=' ', left=1), | |
] | |
) | |
def tokenizer(self, proto): | |
model_type = proto.trainer_spec.model_type | |
vocab_scores = self.vocab(proto) | |
# special tokens | |
added_tokens = self.original_tokenizer.added_tokens_decoder | |
for i in range(len(vocab_scores)): | |
piece, score = vocab_scores[i] | |
if i in added_tokens: | |
vocab_scores[i] = (added_tokens[i].content, score) | |
if model_type == 1: | |
raise RuntimeError('InternLM2 is supposed to be a BPE model!') | |
elif model_type == 2: | |
_, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores) | |
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} | |
tokenizer = Tokenizer( | |
BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True) | |
) | |
tokenizer.add_special_tokens( | |
[ added_token for index, added_token in added_tokens.items()] | |
) | |
else: | |
raise Exception( | |
"You're trying to run a `Unigram` model but you're file was trained with a different algorithm" | |
) | |
return tokenizer | |
def normalizer(self, proto): | |
normalizers_list = [] | |
if proto.normalizer_spec.add_dummy_prefix: | |
normalizers_list.append(normalizers.Prepend(prepend='β')) | |
normalizers_list.append(normalizers.Replace(pattern=' ', content='β')) | |
return normalizers.Sequence(normalizers_list) | |
def pre_tokenizer(self, replacement, add_prefix_space): | |
return None | |
SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter | |
# Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast | |
class InternLM2TokenizerFast(PreTrainedTokenizerFast): | |
vocab_files_names = VOCAB_FILES_NAMES | |
slow_tokenizer_class = InternLM2Tokenizer | |
padding_side = 'left' | |
model_input_names = ['input_ids', 'attention_mask'] | |
_auto_class = 'AutoTokenizer' | |
def __init__( | |
self, | |
vocab_file, | |
unk_token='<unk>', | |
bos_token='<s>', | |
eos_token='</s>', | |
pad_token='</s>', | |
sp_model_kwargs: Optional[Dict[str, Any]] = None, | |
add_bos_token=True, | |
add_eos_token=False, | |
decode_with_prefix_space=False, | |
clean_up_tokenization_spaces=False, | |
**kwargs, | |
): | |
super().__init__( | |
vocab_file=vocab_file, | |
unk_token=unk_token, | |
bos_token=bos_token, | |
eos_token=eos_token, | |
pad_token=pad_token, | |
sp_model_kwargs=sp_model_kwargs, | |
add_bos_token=add_bos_token, | |
add_eos_token=add_eos_token, | |
decode_with_prefix_space=decode_with_prefix_space, | |
clean_up_tokenization_spaces=clean_up_tokenization_spaces, | |
**kwargs, | |
) | |
self._add_bos_token = add_bos_token | |
self._add_eos_token = add_eos_token | |
self.update_post_processor() | |
self.vocab_file = vocab_file | |
def can_save_slow_tokenizer(self) -> bool: | |
return os.path.isfile(self.vocab_file) if self.vocab_file else False | |
def update_post_processor(self): | |
""" | |
Updates the underlying post processor with the current `bos_token` and `eos_token`. | |
""" | |
bos = self.bos_token | |
bos_token_id = self.bos_token_id | |
if bos is None and self.add_bos_token: | |
raise ValueError('add_bos_token = True but bos_token = None') | |
eos = self.eos_token | |
eos_token_id = self.eos_token_id | |
if eos is None and self.add_eos_token: | |
raise ValueError('add_eos_token = True but eos_token = None') | |
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" | |
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" | |
special_tokens = [] | |
if self.add_bos_token: | |
special_tokens.append((bos, bos_token_id)) | |
if self.add_eos_token: | |
special_tokens.append((eos, eos_token_id)) | |
self._tokenizer.post_processor = processors.TemplateProcessing( | |
single=single, pair=pair, special_tokens=special_tokens | |
) | |
def add_eos_token(self): | |
return self._add_eos_token | |
def add_bos_token(self): | |
return self._add_bos_token | |
def add_eos_token(self, value): | |
self._add_eos_token = value | |
self.update_post_processor() | |
def add_bos_token(self, value): | |
self._add_bos_token = value | |
self.update_post_processor() | |
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | |
if not self.can_save_slow_tokenizer: | |
raise ValueError( | |
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' | |
'tokenizer.' | |
) | |
if not os.path.isdir(save_directory): | |
logger.error(f'Vocabulary path ({save_directory}) should be a directory') | |
return | |
out_vocab_file = os.path.join( | |
save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] | |
) | |
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): | |
copyfile(self.vocab_file, out_vocab_file) | |
return (out_vocab_file,) | |