Diffusers Bot
commited on
Commit
•
b87fc0a
1
Parent(s):
f0cae4b
Upload folder using huggingface_hub
Browse files- v0.11.0/README.md +818 -0
- v0.11.0/bit_diffusion.py +265 -0
- v0.11.0/checkpoint_merger.py +262 -0
- v0.11.0/clip_guided_stable_diffusion.py +351 -0
- v0.11.0/composable_stable_diffusion.py +329 -0
- v0.11.0/imagic_stable_diffusion.py +501 -0
- v0.11.0/img2img_inpainting.py +463 -0
- v0.11.0/interpolate_stable_diffusion.py +524 -0
- v0.11.0/lpw_stable_diffusion.py +1162 -0
- v0.11.0/lpw_stable_diffusion_onnx.py +1148 -0
- v0.11.0/multilingual_stable_diffusion.py +436 -0
- v0.11.0/one_step_unet.py +24 -0
- v0.11.0/sd_text2img_k_diffusion.py +476 -0
- v0.11.0/seed_resize_stable_diffusion.py +366 -0
- v0.11.0/speech_to_image_diffusion.py +261 -0
- v0.11.0/stable_diffusion_comparison.py +405 -0
- v0.11.0/stable_diffusion_mega.py +227 -0
- v0.11.0/text_inpainting.py +302 -0
- v0.11.0/wildcard_stable_diffusion.py +418 -0
v0.11.0/README.md
ADDED
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Community Examples
|
2 |
+
|
3 |
+
> **For more information about community pipelines, please have a look at [this issue](https://github.com/huggingface/diffusers/issues/841).**
|
4 |
+
|
5 |
+
**Community** examples consist of both inference and training examples that have been added by the community.
|
6 |
+
Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste ready code example that you can try out.
|
7 |
+
If a community doesn't work as expected, please open an issue and ping the author on it.
|
8 |
+
|
9 |
+
| Example | Description | Code Example | Colab | Author |
|
10 |
+
|:---------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------:|
|
11 |
+
| CLIP Guided Stable Diffusion | Doing CLIP guidance for text to image generation with Stable Diffusion | [CLIP Guided Stable Diffusion](#clip-guided-stable-diffusion) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/CLIP_Guided_Stable_diffusion_with_diffusers.ipynb) | [Suraj Patil](https://github.com/patil-suraj/) |
|
12 |
+
| One Step U-Net (Dummy) | Example showcasing of how to use Community Pipelines (see https://github.com/huggingface/diffusers/issues/841) | [One Step U-Net](#one-step-unet) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
|
13 |
+
| Stable Diffusion Interpolation | Interpolate the latent space of Stable Diffusion between different prompts/seeds | [Stable Diffusion Interpolation](#stable-diffusion-interpolation) | - | [Nate Raw](https://github.com/nateraw/) |
|
14 |
+
| Stable Diffusion Mega | **One** Stable Diffusion Pipeline with all functionalities of [Text2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py), [Image2Image](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py) and [Inpainting](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py) | [Stable Diffusion Mega](#stable-diffusion-mega) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
|
15 |
+
| Long Prompt Weighting Stable Diffusion | **One** Stable Diffusion Pipeline without tokens length limit, and support parsing weighting in prompt. | [Long Prompt Weighting Stable Diffusion](#long-prompt-weighting-stable-diffusion) | - | [SkyTNT](https://github.com/SkyTNT) |
|
16 |
+
| Speech to Image | Using automatic-speech-recognition to transcribe text and Stable Diffusion to generate images | [Speech to Image](#speech-to-image) | - | [Mikail Duzenli](https://github.com/MikailINTech)
|
17 |
+
| Wild Card Stable Diffusion | Stable Diffusion Pipeline that supports prompts that contain wildcard terms (indicated by surrounding double underscores), with values instantiated randomly from a corresponding txt file or a dictionary of possible values | [Wildcard Stable Diffusion](#wildcard-stable-diffusion) | - | [Shyam Sudhakaran](https://github.com/shyamsn97) |
|
18 |
+
| [Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) | Stable Diffusion Pipeline that supports prompts that contain "|" in prompts (as an AND condition) and weights (separated by "|" as well) to positively / negatively weight prompts. | [Composable Stable Diffusion](#composable-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
|
19 |
+
| Seed Resizing Stable Diffusion| Stable Diffusion Pipeline that supports resizing an image and retaining the concepts of the 512 by 512 generation. | [Seed Resizing](#seed-resizing) | - | [Mark Rich](https://github.com/MarkRich) |
|
20 |
+
| Imagic Stable Diffusion | Stable Diffusion Pipeline that enables writing a text prompt to edit an existing image| [Imagic Stable Diffusion](#imagic-stable-diffusion) | - | [Mark Rich](https://github.com/MarkRich) |
|
21 |
+
| Multilingual Stable Diffusion| Stable Diffusion Pipeline that supports prompts in 50 different languages. | [Multilingual Stable Diffusion](#multilingual-stable-diffusion-pipeline) | - | [Juan Carlos Piñeros](https://github.com/juancopi81) |
|
22 |
+
| Image to Image Inpainting Stable Diffusion | Stable Diffusion Pipeline that enables the overlaying of two images and subsequent inpainting| [Image to Image Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Alex McKinney](https://github.com/vvvm23) |
|
23 |
+
| Text Based Inpainting Stable Diffusion | Stable Diffusion Inpainting Pipeline that enables passing a text prompt to generate the mask for inpainting| [Text Based Inpainting Stable Diffusion](#image-to-image-inpainting-stable-diffusion) | - | [Dhruv Karan](https://github.com/unography) |
|
24 |
+
| Bit Diffusion | Diffusion on discrete data | [Bit Diffusion](#bit-diffusion) | - |[Stuti R.](https://github.com/kingstut) |
|
25 |
+
| K-Diffusion Stable Diffusion | Run Stable Diffusion with any of [K-Diffusion's samplers](https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py) | [Stable Diffusion with K Diffusion](#stable-diffusion-with-k-diffusion) | - | [Patrick von Platen](https://github.com/patrickvonplaten/) |
|
26 |
+
| Checkpoint Merger Pipeline | Diffusion Pipeline that enables merging of saved model checkpoints | [Checkpoint Merger Pipeline](#checkpoint-merger-pipeline) | - | [Naga Sai Abhinay Devarinti](https://github.com/Abhinay1997/) |
|
27 |
+
Stable Diffusion v1.1-1.4 Comparison | Run all 4 model checkpoints for Stable Diffusion and compare their results together | [Stable Diffusion Comparison](#stable-diffusion-comparisons) | - | [Suvaditya Mukherjee](https://github.com/suvadityamuk) |
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
|
32 |
+
```py
|
33 |
+
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="filename_in_the_community_folder")
|
34 |
+
```
|
35 |
+
|
36 |
+
## Example usages
|
37 |
+
|
38 |
+
### CLIP Guided Stable Diffusion
|
39 |
+
|
40 |
+
CLIP guided stable diffusion can help to generate more realistic images
|
41 |
+
by guiding stable diffusion at every denoising step with an additional CLIP model.
|
42 |
+
|
43 |
+
The following code requires roughly 12GB of GPU RAM.
|
44 |
+
|
45 |
+
```python
|
46 |
+
from diffusers import DiffusionPipeline
|
47 |
+
from transformers import CLIPFeatureExtractor, CLIPModel
|
48 |
+
import torch
|
49 |
+
|
50 |
+
|
51 |
+
feature_extractor = CLIPFeatureExtractor.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K")
|
52 |
+
clip_model = CLIPModel.from_pretrained("laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16)
|
53 |
+
|
54 |
+
|
55 |
+
guided_pipeline = DiffusionPipeline.from_pretrained(
|
56 |
+
"runwayml/stable-diffusion-v1-5",
|
57 |
+
custom_pipeline="clip_guided_stable_diffusion",
|
58 |
+
clip_model=clip_model,
|
59 |
+
feature_extractor=feature_extractor,
|
60 |
+
|
61 |
+
torch_dtype=torch.float16,
|
62 |
+
)
|
63 |
+
guided_pipeline.enable_attention_slicing()
|
64 |
+
guided_pipeline = guided_pipeline.to("cuda")
|
65 |
+
|
66 |
+
prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece"
|
67 |
+
|
68 |
+
generator = torch.Generator(device="cuda").manual_seed(0)
|
69 |
+
images = []
|
70 |
+
for i in range(4):
|
71 |
+
image = guided_pipeline(
|
72 |
+
prompt,
|
73 |
+
num_inference_steps=50,
|
74 |
+
guidance_scale=7.5,
|
75 |
+
clip_guidance_scale=100,
|
76 |
+
num_cutouts=4,
|
77 |
+
use_cutouts=False,
|
78 |
+
generator=generator,
|
79 |
+
).images[0]
|
80 |
+
images.append(image)
|
81 |
+
|
82 |
+
# save images locally
|
83 |
+
for i, img in enumerate(images):
|
84 |
+
img.save(f"./clip_guided_sd/image_{i}.png")
|
85 |
+
```
|
86 |
+
|
87 |
+
The `images` list contains a list of PIL images that can be saved locally or displayed directly in a google colab.
|
88 |
+
Generated images tend to be of higher qualtiy than natively using stable diffusion. E.g. the above script generates the following images:
|
89 |
+
|
90 |
+
![clip_guidance](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/clip_guidance/merged_clip_guidance.jpg).
|
91 |
+
|
92 |
+
### One Step Unet
|
93 |
+
|
94 |
+
The dummy "one-step-unet" can be run as follows:
|
95 |
+
|
96 |
+
```python
|
97 |
+
from diffusers import DiffusionPipeline
|
98 |
+
|
99 |
+
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="one_step_unet")
|
100 |
+
pipe()
|
101 |
+
```
|
102 |
+
|
103 |
+
**Note**: This community pipeline is not useful as a feature, but rather just serves as an example of how community pipelines can be added (see https://github.com/huggingface/diffusers/issues/841).
|
104 |
+
|
105 |
+
### Stable Diffusion Interpolation
|
106 |
+
|
107 |
+
The following code can be run on a GPU of at least 8GB VRAM and should take approximately 5 minutes.
|
108 |
+
|
109 |
+
```python
|
110 |
+
from diffusers import DiffusionPipeline
|
111 |
+
import torch
|
112 |
+
|
113 |
+
pipe = DiffusionPipeline.from_pretrained(
|
114 |
+
"CompVis/stable-diffusion-v1-4",
|
115 |
+
revision='fp16',
|
116 |
+
torch_dtype=torch.float16,
|
117 |
+
safety_checker=None, # Very important for videos...lots of false positives while interpolating
|
118 |
+
custom_pipeline="interpolate_stable_diffusion",
|
119 |
+
).to('cuda')
|
120 |
+
pipe.enable_attention_slicing()
|
121 |
+
|
122 |
+
frame_filepaths = pipe.walk(
|
123 |
+
prompts=['a dog', 'a cat', 'a horse'],
|
124 |
+
seeds=[42, 1337, 1234],
|
125 |
+
num_interpolation_steps=16,
|
126 |
+
output_dir='./dreams',
|
127 |
+
batch_size=4,
|
128 |
+
height=512,
|
129 |
+
width=512,
|
130 |
+
guidance_scale=8.5,
|
131 |
+
num_inference_steps=50,
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
The output of the `walk(...)` function returns a list of images saved under the folder as defined in `output_dir`. You can use these images to create videos of stable diffusion.
|
136 |
+
|
137 |
+
> **Please have a look at https://github.com/nateraw/stable-diffusion-videos for more in-detail information on how to create videos using stable diffusion as well as more feature-complete functionality.**
|
138 |
+
|
139 |
+
### Stable Diffusion Mega
|
140 |
+
|
141 |
+
The Stable Diffusion Mega Pipeline lets you use the main use cases of the stable diffusion pipeline in a single class.
|
142 |
+
|
143 |
+
```python
|
144 |
+
#!/usr/bin/env python3
|
145 |
+
from diffusers import DiffusionPipeline
|
146 |
+
import PIL
|
147 |
+
import requests
|
148 |
+
from io import BytesIO
|
149 |
+
import torch
|
150 |
+
|
151 |
+
|
152 |
+
def download_image(url):
|
153 |
+
response = requests.get(url)
|
154 |
+
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
|
155 |
+
|
156 |
+
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega", torch_dtype=torch.float16, revision="fp16")
|
157 |
+
pipe.to("cuda")
|
158 |
+
pipe.enable_attention_slicing()
|
159 |
+
|
160 |
+
|
161 |
+
### Text-to-Image
|
162 |
+
|
163 |
+
images = pipe.text2img("An astronaut riding a horse").images
|
164 |
+
|
165 |
+
### Image-to-Image
|
166 |
+
|
167 |
+
init_image = download_image("https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg")
|
168 |
+
|
169 |
+
prompt = "A fantasy landscape, trending on artstation"
|
170 |
+
|
171 |
+
images = pipe.img2img(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images
|
172 |
+
|
173 |
+
### Inpainting
|
174 |
+
|
175 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
176 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
177 |
+
init_image = download_image(img_url).resize((512, 512))
|
178 |
+
mask_image = download_image(mask_url).resize((512, 512))
|
179 |
+
|
180 |
+
prompt = "a cat sitting on a bench"
|
181 |
+
images = pipe.inpaint(prompt=prompt, image=init_image, mask_image=mask_image, strength=0.75).images
|
182 |
+
```
|
183 |
+
|
184 |
+
As shown above this one pipeline can run all both "text-to-image", "image-to-image", and "inpainting" in one pipeline.
|
185 |
+
|
186 |
+
### Long Prompt Weighting Stable Diffusion
|
187 |
+
Features of this custom pipeline:
|
188 |
+
- Input a prompt without the 77 token length limit.
|
189 |
+
- Includes tx2img, img2img. and inpainting pipelines.
|
190 |
+
- Emphasize/weigh part of your prompt with parentheses as so: `a baby deer with (big eyes)`
|
191 |
+
- De-emphasize part of your prompt as so: `a [baby] deer with big eyes`
|
192 |
+
- Precisely weigh part of your prompt as so: `a baby deer with (big eyes:1.3)`
|
193 |
+
|
194 |
+
Prompt weighting equivalents:
|
195 |
+
- `a baby deer with` == `(a baby deer with:1.0)`
|
196 |
+
- `(big eyes)` == `(big eyes:1.1)`
|
197 |
+
- `((big eyes))` == `(big eyes:1.21)`
|
198 |
+
- `[big eyes]` == `(big eyes:0.91)`
|
199 |
+
|
200 |
+
You can run this custom pipeline as so:
|
201 |
+
|
202 |
+
#### pytorch
|
203 |
+
|
204 |
+
```python
|
205 |
+
from diffusers import DiffusionPipeline
|
206 |
+
import torch
|
207 |
+
|
208 |
+
pipe = DiffusionPipeline.from_pretrained(
|
209 |
+
'hakurei/waifu-diffusion',
|
210 |
+
custom_pipeline="lpw_stable_diffusion",
|
211 |
+
|
212 |
+
torch_dtype=torch.float16
|
213 |
+
)
|
214 |
+
pipe=pipe.to("cuda")
|
215 |
+
|
216 |
+
prompt = "best_quality (1girl:1.3) bow bride brown_hair closed_mouth frilled_bow frilled_hair_tubes frills (full_body:1.3) fox_ear hair_bow hair_tubes happy hood japanese_clothes kimono long_sleeves red_bow smile solo tabi uchikake white_kimono wide_sleeves cherry_blossoms"
|
217 |
+
neg_prompt = "lowres, bad_anatomy, error_body, error_hair, error_arm, error_hands, bad_hands, error_fingers, bad_fingers, missing_fingers, error_legs, bad_legs, multiple_legs, missing_legs, error_lighting, error_shadow, error_reflection, text, error, extra_digit, fewer_digits, cropped, worst_quality, low_quality, normal_quality, jpeg_artifacts, signature, watermark, username, blurry"
|
218 |
+
|
219 |
+
pipe.text2img(prompt, negative_prompt=neg_prompt, width=512,height=512,max_embeddings_multiples=3).images[0]
|
220 |
+
|
221 |
+
```
|
222 |
+
|
223 |
+
#### onnxruntime
|
224 |
+
|
225 |
+
```python
|
226 |
+
from diffusers import DiffusionPipeline
|
227 |
+
import torch
|
228 |
+
|
229 |
+
pipe = DiffusionPipeline.from_pretrained(
|
230 |
+
'CompVis/stable-diffusion-v1-4',
|
231 |
+
custom_pipeline="lpw_stable_diffusion_onnx",
|
232 |
+
revision="onnx",
|
233 |
+
provider="CUDAExecutionProvider"
|
234 |
+
)
|
235 |
+
|
236 |
+
prompt = "a photo of an astronaut riding a horse on mars, best quality"
|
237 |
+
neg_prompt = "lowres, bad anatomy, error body, error hair, error arm, error hands, bad hands, error fingers, bad fingers, missing fingers, error legs, bad legs, multiple legs, missing legs, error lighting, error shadow, error reflection, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry"
|
238 |
+
|
239 |
+
pipe.text2img(prompt,negative_prompt=neg_prompt, width=512, height=512, max_embeddings_multiples=3).images[0]
|
240 |
+
|
241 |
+
```
|
242 |
+
|
243 |
+
if you see `Token indices sequence length is longer than the specified maximum sequence length for this model ( *** > 77 ) . Running this sequence through the model will result in indexing errors`. Do not worry, it is normal.
|
244 |
+
|
245 |
+
### Speech to Image
|
246 |
+
|
247 |
+
The following code can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.
|
248 |
+
|
249 |
+
```Python
|
250 |
+
import torch
|
251 |
+
|
252 |
+
import matplotlib.pyplot as plt
|
253 |
+
from datasets import load_dataset
|
254 |
+
from diffusers import DiffusionPipeline
|
255 |
+
from transformers import (
|
256 |
+
WhisperForConditionalGeneration,
|
257 |
+
WhisperProcessor,
|
258 |
+
)
|
259 |
+
|
260 |
+
|
261 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
262 |
+
|
263 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
264 |
+
|
265 |
+
audio_sample = ds[3]
|
266 |
+
|
267 |
+
text = audio_sample["text"].lower()
|
268 |
+
speech_data = audio_sample["audio"]["array"]
|
269 |
+
|
270 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
271 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
272 |
+
|
273 |
+
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
274 |
+
"CompVis/stable-diffusion-v1-4",
|
275 |
+
custom_pipeline="speech_to_image_diffusion",
|
276 |
+
speech_model=model,
|
277 |
+
speech_processor=processor,
|
278 |
+
|
279 |
+
torch_dtype=torch.float16,
|
280 |
+
)
|
281 |
+
|
282 |
+
diffuser_pipeline.enable_attention_slicing()
|
283 |
+
diffuser_pipeline = diffuser_pipeline.to(device)
|
284 |
+
|
285 |
+
output = diffuser_pipeline(speech_data)
|
286 |
+
plt.imshow(output.images[0])
|
287 |
+
```
|
288 |
+
This example produces the following image:
|
289 |
+
|
290 |
+
![image](https://user-images.githubusercontent.com/45072645/196901736-77d9c6fc-63ee-4072-90b0-dc8b903d63e3.png)
|
291 |
+
|
292 |
+
### Wildcard Stable Diffusion
|
293 |
+
Following the great examples from https://github.com/jtkelm2/stable-diffusion-webui-1/blob/master/scripts/wildcards.py and https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts#wildcards, here's a minimal implementation that allows for users to add "wildcards", denoted by `__wildcard__` to prompts that are used as placeholders for randomly sampled values given by either a dictionary or a `.txt` file. For example:
|
294 |
+
|
295 |
+
Say we have a prompt:
|
296 |
+
|
297 |
+
```
|
298 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
299 |
+
```
|
300 |
+
|
301 |
+
We can then define possible values to be sampled for `animal`, `object`, and `clothing`. These can either be from a `.txt` with the same name as the category.
|
302 |
+
|
303 |
+
The possible values can also be defined / combined by using a dictionary like: `{"animal":["dog", "cat", mouse"]}`.
|
304 |
+
|
305 |
+
The actual pipeline works just like `StableDiffusionPipeline`, except the `__call__` method takes in:
|
306 |
+
|
307 |
+
`wildcard_files`: list of file paths for wild card replacement
|
308 |
+
`wildcard_option_dict`: dict with key as `wildcard` and values as a list of possible replacements
|
309 |
+
`num_prompt_samples`: number of prompts to sample, uniformly sampling wildcards
|
310 |
+
|
311 |
+
A full example:
|
312 |
+
|
313 |
+
create `animal.txt`, with contents like:
|
314 |
+
|
315 |
+
```
|
316 |
+
dog
|
317 |
+
cat
|
318 |
+
mouse
|
319 |
+
```
|
320 |
+
|
321 |
+
create `object.txt`, with contents like:
|
322 |
+
|
323 |
+
```
|
324 |
+
chair
|
325 |
+
sofa
|
326 |
+
bench
|
327 |
+
```
|
328 |
+
|
329 |
+
```python
|
330 |
+
from diffusers import DiffusionPipeline
|
331 |
+
import torch
|
332 |
+
|
333 |
+
pipe = DiffusionPipeline.from_pretrained(
|
334 |
+
"CompVis/stable-diffusion-v1-4",
|
335 |
+
custom_pipeline="wildcard_stable_diffusion",
|
336 |
+
|
337 |
+
torch_dtype=torch.float16,
|
338 |
+
)
|
339 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
340 |
+
out = pipe(
|
341 |
+
prompt,
|
342 |
+
wildcard_option_dict={
|
343 |
+
"clothing":["hat", "shirt", "scarf", "beret"]
|
344 |
+
},
|
345 |
+
wildcard_files=["object.txt", "animal.txt"],
|
346 |
+
num_prompt_samples=1
|
347 |
+
)
|
348 |
+
```
|
349 |
+
|
350 |
+
### Composable Stable diffusion
|
351 |
+
|
352 |
+
[Composable Stable Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/) proposes conjunction and negation (negative prompts) operators for compositional generation with conditional diffusion models.
|
353 |
+
|
354 |
+
```python
|
355 |
+
import torch as th
|
356 |
+
import numpy as np
|
357 |
+
import torchvision.utils as tvu
|
358 |
+
from diffusers import DiffusionPipeline
|
359 |
+
|
360 |
+
has_cuda = th.cuda.is_available()
|
361 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
362 |
+
|
363 |
+
pipe = DiffusionPipeline.from_pretrained(
|
364 |
+
"CompVis/stable-diffusion-v1-4",
|
365 |
+
use_auth_token=True,
|
366 |
+
custom_pipeline="composable_stable_diffusion",
|
367 |
+
).to(device)
|
368 |
+
|
369 |
+
|
370 |
+
def dummy(images, **kwargs):
|
371 |
+
return images, False
|
372 |
+
|
373 |
+
pipe.safety_checker = dummy
|
374 |
+
|
375 |
+
images = []
|
376 |
+
generator = torch.Generator("cuda").manual_seed(0)
|
377 |
+
|
378 |
+
seed = 0
|
379 |
+
prompt = "a forest | a camel"
|
380 |
+
weights = " 1 | 1" # Equal weight to each prompt. Can be negative
|
381 |
+
|
382 |
+
images = []
|
383 |
+
for i in range(4):
|
384 |
+
res = pipe(
|
385 |
+
prompt,
|
386 |
+
guidance_scale=7.5,
|
387 |
+
num_inference_steps=50,
|
388 |
+
weights=weights,
|
389 |
+
generator=generator)
|
390 |
+
image = res.images[0]
|
391 |
+
images.append(image)
|
392 |
+
|
393 |
+
for i, img in enumerate(images):
|
394 |
+
img.save(f"./composable_diffusion/image_{i}.png")
|
395 |
+
```
|
396 |
+
|
397 |
+
### Imagic Stable Diffusion
|
398 |
+
Allows you to edit an image using stable diffusion.
|
399 |
+
|
400 |
+
```python
|
401 |
+
import requests
|
402 |
+
from PIL import Image
|
403 |
+
from io import BytesIO
|
404 |
+
import torch
|
405 |
+
import os
|
406 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
407 |
+
has_cuda = torch.cuda.is_available()
|
408 |
+
device = torch.device('cpu' if not has_cuda else 'cuda')
|
409 |
+
pipe = DiffusionPipeline.from_pretrained(
|
410 |
+
"CompVis/stable-diffusion-v1-4",
|
411 |
+
safety_checker=None,
|
412 |
+
use_auth_token=True,
|
413 |
+
custom_pipeline="imagic_stable_diffusion",
|
414 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
415 |
+
).to(device)
|
416 |
+
generator = torch.Generator("cuda").manual_seed(0)
|
417 |
+
seed = 0
|
418 |
+
prompt = "A photo of Barack Obama smiling with a big grin"
|
419 |
+
url = 'https://www.dropbox.com/s/6tlwzr73jd1r9yk/obama.png?dl=1'
|
420 |
+
response = requests.get(url)
|
421 |
+
init_image = Image.open(BytesIO(response.content)).convert("RGB")
|
422 |
+
init_image = init_image.resize((512, 512))
|
423 |
+
res = pipe.train(
|
424 |
+
prompt,
|
425 |
+
image=init_image,
|
426 |
+
generator=generator)
|
427 |
+
res = pipe(alpha=1, guidance_scale=7.5, num_inference_steps=50)
|
428 |
+
os.makedirs("imagic", exist_ok=True)
|
429 |
+
image = res.images[0]
|
430 |
+
image.save('./imagic/imagic_image_alpha_1.png')
|
431 |
+
res = pipe(alpha=1.5, guidance_scale=7.5, num_inference_steps=50)
|
432 |
+
image = res.images[0]
|
433 |
+
image.save('./imagic/imagic_image_alpha_1_5.png')
|
434 |
+
res = pipe(alpha=2, guidance_scale=7.5, num_inference_steps=50)
|
435 |
+
image = res.images[0]
|
436 |
+
image.save('./imagic/imagic_image_alpha_2.png')
|
437 |
+
```
|
438 |
+
|
439 |
+
### Seed Resizing
|
440 |
+
Test seed resizing. Originally generate an image in 512 by 512, then generate image with same seed at 512 by 592 using seed resizing. Finally, generate 512 by 592 using original stable diffusion pipeline.
|
441 |
+
|
442 |
+
```python
|
443 |
+
import torch as th
|
444 |
+
import numpy as np
|
445 |
+
from diffusers import DiffusionPipeline
|
446 |
+
|
447 |
+
has_cuda = th.cuda.is_available()
|
448 |
+
device = th.device('cpu' if not has_cuda else 'cuda')
|
449 |
+
|
450 |
+
pipe = DiffusionPipeline.from_pretrained(
|
451 |
+
"CompVis/stable-diffusion-v1-4",
|
452 |
+
use_auth_token=True,
|
453 |
+
custom_pipeline="seed_resize_stable_diffusion"
|
454 |
+
).to(device)
|
455 |
+
|
456 |
+
def dummy(images, **kwargs):
|
457 |
+
return images, False
|
458 |
+
|
459 |
+
pipe.safety_checker = dummy
|
460 |
+
|
461 |
+
|
462 |
+
images = []
|
463 |
+
th.manual_seed(0)
|
464 |
+
generator = th.Generator("cuda").manual_seed(0)
|
465 |
+
|
466 |
+
seed = 0
|
467 |
+
prompt = "A painting of a futuristic cop"
|
468 |
+
|
469 |
+
width = 512
|
470 |
+
height = 512
|
471 |
+
|
472 |
+
res = pipe(
|
473 |
+
prompt,
|
474 |
+
guidance_scale=7.5,
|
475 |
+
num_inference_steps=50,
|
476 |
+
height=height,
|
477 |
+
width=width,
|
478 |
+
generator=generator)
|
479 |
+
image = res.images[0]
|
480 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))
|
481 |
+
|
482 |
+
|
483 |
+
th.manual_seed(0)
|
484 |
+
generator = th.Generator("cuda").manual_seed(0)
|
485 |
+
|
486 |
+
pipe = DiffusionPipeline.from_pretrained(
|
487 |
+
"CompVis/stable-diffusion-v1-4",
|
488 |
+
use_auth_token=True,
|
489 |
+
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
490 |
+
).to(device)
|
491 |
+
|
492 |
+
width = 512
|
493 |
+
height = 592
|
494 |
+
|
495 |
+
res = pipe(
|
496 |
+
prompt,
|
497 |
+
guidance_scale=7.5,
|
498 |
+
num_inference_steps=50,
|
499 |
+
height=height,
|
500 |
+
width=width,
|
501 |
+
generator=generator)
|
502 |
+
image = res.images[0]
|
503 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image.png'.format(w=width, h=height))
|
504 |
+
|
505 |
+
pipe_compare = DiffusionPipeline.from_pretrained(
|
506 |
+
"CompVis/stable-diffusion-v1-4",
|
507 |
+
use_auth_token=True,
|
508 |
+
custom_pipeline="/home/mark/open_source/diffusers/examples/community/"
|
509 |
+
).to(device)
|
510 |
+
|
511 |
+
res = pipe_compare(
|
512 |
+
prompt,
|
513 |
+
guidance_scale=7.5,
|
514 |
+
num_inference_steps=50,
|
515 |
+
height=height,
|
516 |
+
width=width,
|
517 |
+
generator=generator
|
518 |
+
)
|
519 |
+
|
520 |
+
image = res.images[0]
|
521 |
+
image.save('./seed_resize/seed_resize_{w}_{h}_image_compare.png'.format(w=width, h=height))
|
522 |
+
```
|
523 |
+
|
524 |
+
### Multilingual Stable Diffusion Pipeline
|
525 |
+
|
526 |
+
The following code can generate an images from texts in different languages using the pre-trained [mBART-50 many-to-one multilingual machine translation model](https://huggingface.co/facebook/mbart-large-50-many-to-one-mmt) and Stable Diffusion.
|
527 |
+
|
528 |
+
```python
|
529 |
+
from PIL import Image
|
530 |
+
|
531 |
+
import torch
|
532 |
+
|
533 |
+
from diffusers import DiffusionPipeline
|
534 |
+
from transformers import (
|
535 |
+
pipeline,
|
536 |
+
MBart50TokenizerFast,
|
537 |
+
MBartForConditionalGeneration,
|
538 |
+
)
|
539 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
540 |
+
device_dict = {"cuda": 0, "cpu": -1}
|
541 |
+
|
542 |
+
# helper function taken from: https://huggingface.co/blog/stable_diffusion
|
543 |
+
def image_grid(imgs, rows, cols):
|
544 |
+
assert len(imgs) == rows*cols
|
545 |
+
|
546 |
+
w, h = imgs[0].size
|
547 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
548 |
+
grid_w, grid_h = grid.size
|
549 |
+
|
550 |
+
for i, img in enumerate(imgs):
|
551 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
552 |
+
return grid
|
553 |
+
|
554 |
+
# Add language detection pipeline
|
555 |
+
language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
556 |
+
language_detection_pipeline = pipeline("text-classification",
|
557 |
+
model=language_detection_model_ckpt,
|
558 |
+
device=device_dict[device])
|
559 |
+
|
560 |
+
# Add model for language translation
|
561 |
+
trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
|
562 |
+
trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device)
|
563 |
+
|
564 |
+
diffuser_pipeline = DiffusionPipeline.from_pretrained(
|
565 |
+
"CompVis/stable-diffusion-v1-4",
|
566 |
+
custom_pipeline="multilingual_stable_diffusion",
|
567 |
+
detection_pipeline=language_detection_pipeline,
|
568 |
+
translation_model=trans_model,
|
569 |
+
translation_tokenizer=trans_tokenizer,
|
570 |
+
|
571 |
+
torch_dtype=torch.float16,
|
572 |
+
)
|
573 |
+
|
574 |
+
diffuser_pipeline.enable_attention_slicing()
|
575 |
+
diffuser_pipeline = diffuser_pipeline.to(device)
|
576 |
+
|
577 |
+
prompt = ["a photograph of an astronaut riding a horse",
|
578 |
+
"Una casa en la playa",
|
579 |
+
"Ein Hund, der Orange isst",
|
580 |
+
"Un restaurant parisien"]
|
581 |
+
|
582 |
+
output = diffuser_pipeline(prompt)
|
583 |
+
|
584 |
+
images = output.images
|
585 |
+
|
586 |
+
grid = image_grid(images, rows=2, cols=2)
|
587 |
+
```
|
588 |
+
|
589 |
+
This example produces the following images:
|
590 |
+
![image](https://user-images.githubusercontent.com/4313860/198328706-295824a4-9856-4ce5-8e66-278ceb42fd29.png)
|
591 |
+
|
592 |
+
### Image to Image Inpainting Stable Diffusion
|
593 |
+
|
594 |
+
Similar to the standard stable diffusion inpainting example, except with the addition of an `inner_image` argument.
|
595 |
+
|
596 |
+
`image`, `inner_image`, and `mask` should have the same dimensions. `inner_image` should have an alpha (transparency) channel.
|
597 |
+
|
598 |
+
The aim is to overlay two images, then mask out the boundary between `image` and `inner_image` to allow stable diffusion to make the connection more seamless.
|
599 |
+
For example, this could be used to place a logo on a shirt and make it blend seamlessly.
|
600 |
+
|
601 |
+
```python
|
602 |
+
import PIL
|
603 |
+
import torch
|
604 |
+
|
605 |
+
from diffusers import DiffusionPipeline
|
606 |
+
|
607 |
+
image_path = "./path-to-image.png"
|
608 |
+
inner_image_path = "./path-to-inner-image.png"
|
609 |
+
mask_path = "./path-to-mask.png"
|
610 |
+
|
611 |
+
init_image = PIL.Image.open(image_path).convert("RGB").resize((512, 512))
|
612 |
+
inner_image = PIL.Image.open(inner_image_path).convert("RGBA").resize((512, 512))
|
613 |
+
mask_image = PIL.Image.open(mask_path).convert("RGB").resize((512, 512))
|
614 |
+
|
615 |
+
pipe = DiffusionPipeline.from_pretrained(
|
616 |
+
"runwayml/stable-diffusion-inpainting",
|
617 |
+
custom_pipeline="img2img_inpainting",
|
618 |
+
|
619 |
+
torch_dtype=torch.float16
|
620 |
+
)
|
621 |
+
pipe = pipe.to("cuda")
|
622 |
+
|
623 |
+
prompt = "Your prompt here!"
|
624 |
+
image = pipe(prompt=prompt, image=init_image, inner_image=inner_image, mask_image=mask_image).images[0]
|
625 |
+
```
|
626 |
+
|
627 |
+
![2 by 2 grid demonstrating image to image inpainting.](https://user-images.githubusercontent.com/44398246/203506577-ec303be4-887e-4ebd-a773-c83fcb3dd01a.png)
|
628 |
+
|
629 |
+
### Text Based Inpainting Stable Diffusion
|
630 |
+
|
631 |
+
Use a text prompt to generate the mask for the area to be inpainted.
|
632 |
+
Currently uses the CLIPSeg model for mask generation, then calls the standard Stable Diffusion Inpainting pipeline to perform the inpainting.
|
633 |
+
|
634 |
+
```python
|
635 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
636 |
+
from diffusers import DiffusionPipeline
|
637 |
+
|
638 |
+
from PIL import Image
|
639 |
+
import requests
|
640 |
+
from torch import autocast
|
641 |
+
|
642 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
643 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
644 |
+
|
645 |
+
pipe = DiffusionPipeline.from_pretrained(
|
646 |
+
"runwayml/stable-diffusion-inpainting",
|
647 |
+
custom_pipeline="text_inpainting",
|
648 |
+
segmentation_model=model,
|
649 |
+
segmentation_processor=processor
|
650 |
+
)
|
651 |
+
pipe = pipe.to("cuda")
|
652 |
+
|
653 |
+
|
654 |
+
url = "https://github.com/timojl/clipseg/blob/master/example_image.jpg?raw=true"
|
655 |
+
image = Image.open(requests.get(url, stream=True).raw).resize((512, 512))
|
656 |
+
text = "a glass" # will mask out this text
|
657 |
+
prompt = "a cup" # the masked out region will be replaced with this
|
658 |
+
|
659 |
+
with autocast("cuda"):
|
660 |
+
image = pipe(image=image, text=text, prompt=prompt).images[0]
|
661 |
+
```
|
662 |
+
|
663 |
+
### Bit Diffusion
|
664 |
+
Based https://arxiv.org/abs/2208.04202, this is used for diffusion on discrete data - eg, discreate image data, DNA sequence data. An unconditional discreate image can be generated like this:
|
665 |
+
|
666 |
+
```python
|
667 |
+
from diffusers import DiffusionPipeline
|
668 |
+
pipe = DiffusionPipeline.from_pretrained("google/ddpm-cifar10-32", custom_pipeline="bit_diffusion")
|
669 |
+
image = pipe().images[0]
|
670 |
+
|
671 |
+
```
|
672 |
+
|
673 |
+
### Stable Diffusion with K Diffusion
|
674 |
+
|
675 |
+
Make sure you have @crowsonkb's https://github.com/crowsonkb/k-diffusion installed:
|
676 |
+
|
677 |
+
```
|
678 |
+
pip install k-diffusion
|
679 |
+
```
|
680 |
+
|
681 |
+
You can use the community pipeline as follows:
|
682 |
+
|
683 |
+
```python
|
684 |
+
from diffusers import DiffusionPipeline
|
685 |
+
|
686 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
|
687 |
+
pipe = pipe.to("cuda")
|
688 |
+
|
689 |
+
prompt = "an astronaut riding a horse on mars"
|
690 |
+
pipe.set_scheduler("sample_heun")
|
691 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
692 |
+
image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]
|
693 |
+
|
694 |
+
image.save("./astronaut_heun_k_diffusion.png")
|
695 |
+
```
|
696 |
+
|
697 |
+
To make sure that K Diffusion and `diffusers` yield the same results:
|
698 |
+
|
699 |
+
**Diffusers**:
|
700 |
+
```python
|
701 |
+
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
|
702 |
+
|
703 |
+
seed = 33
|
704 |
+
|
705 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
706 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
707 |
+
pipe = pipe.to("cuda")
|
708 |
+
|
709 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
710 |
+
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
|
711 |
+
```
|
712 |
+
|
713 |
+
![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler.png)
|
714 |
+
|
715 |
+
**K Diffusion**:
|
716 |
+
```python
|
717 |
+
from diffusers import DiffusionPipeline, EulerDiscreteScheduler
|
718 |
+
|
719 |
+
seed = 33
|
720 |
+
|
721 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
|
722 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
723 |
+
pipe = pipe.to("cuda")
|
724 |
+
|
725 |
+
pipe.set_scheduler("sample_euler")
|
726 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
727 |
+
image = pipe(prompt, generator=generator, num_inference_steps=50).images[0]
|
728 |
+
```
|
729 |
+
|
730 |
+
![diffusers_euler](https://huggingface.co/datasets/patrickvonplaten/images/resolve/main/k_diffusion/astronaut_euler_k_diffusion.png)
|
731 |
+
|
732 |
+
### Checkpoint Merger Pipeline
|
733 |
+
Based on the AUTOMATIC1111/webui for checkpoint merging. This is a custom pipeline that merges upto 3 pretrained model checkpoints as long as they are in the HuggingFace model_index.json format.
|
734 |
+
|
735 |
+
The checkpoint merging is currently memory intensive as it modifies the weights of a DiffusionPipeline object in place. Expect atleast 13GB RAM Usage on Kaggle GPU kernels and
|
736 |
+
on colab you might run out of the 12GB memory even while merging two checkpoints.
|
737 |
+
|
738 |
+
Usage:-
|
739 |
+
```python
|
740 |
+
from diffusers import DiffusionPipeline
|
741 |
+
|
742 |
+
#Return a CheckpointMergerPipeline class that allows you to merge checkpoints.
|
743 |
+
#The checkpoint passed here is ignored. But still pass one of the checkpoints you plan to
|
744 |
+
#merge for convenience
|
745 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger")
|
746 |
+
|
747 |
+
#There are multiple possible scenarios:
|
748 |
+
#The pipeline with the merged checkpoints is returned in all the scenarios
|
749 |
+
|
750 |
+
#Compatible checkpoints a.k.a matched model_index.json files. Ignores the meta attributes in model_index.json during comparision.( attrs with _ as prefix )
|
751 |
+
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","CompVis/stable-diffusion-v1-2"], interp = "sigmoid", alpha = 0.4)
|
752 |
+
|
753 |
+
#Incompatible checkpoints in model_index.json but merge might be possible. Use force = True to ignore model_index.json compatibility
|
754 |
+
merged_pipe_1 = pipe.merge(["CompVis/stable-diffusion-v1-4","hakurei/waifu-diffusion"], force = True, interp = "sigmoid", alpha = 0.4)
|
755 |
+
|
756 |
+
#Three checkpoint merging. Only "add_difference" method actually works on all three checkpoints. Using any other options will ignore the 3rd checkpoint.
|
757 |
+
merged_pipe_2 = pipe.merge(["CompVis/stable-diffusion-v1-4","hakurei/waifu-diffusion","prompthero/openjourney"], force = True, interp = "add_difference", alpha = 0.4)
|
758 |
+
|
759 |
+
prompt = "An astronaut riding a horse on Mars"
|
760 |
+
|
761 |
+
image = merged_pipe(prompt).images[0]
|
762 |
+
|
763 |
+
```
|
764 |
+
Some examples along with the merge details:
|
765 |
+
|
766 |
+
1. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" ; Sigmoid interpolation; alpha = 0.8
|
767 |
+
|
768 |
+
![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stability_v1_4_waifu_sig_0.8.png)
|
769 |
+
|
770 |
+
2. "hakurei/waifu-diffusion" + "prompthero/openjourney" ; Inverse Sigmoid interpolation; alpha = 0.8
|
771 |
+
|
772 |
+
![Stable plus Waifu Sigmoid 0.8](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/waifu_openjourney_inv_sig_0.8.png)
|
773 |
+
|
774 |
+
|
775 |
+
3. "CompVis/stable-diffusion-v1-4" + "hakurei/waifu-diffusion" + "prompthero/openjourney"; Add Difference interpolation; alpha = 0.5
|
776 |
+
|
777 |
+
![Stable plus Waifu plus openjourney add_diff 0.5](https://huggingface.co/datasets/NagaSaiAbhinay/CheckpointMergerSamples/resolve/main/stable_waifu_openjourney_add_diff_0.5.png)
|
778 |
+
|
779 |
+
|
780 |
+
### Stable Diffusion Comparisons
|
781 |
+
|
782 |
+
This Community Pipeline enables the comparison between the 4 checkpoints that exist for Stable Diffusion. They can be found through the following links:
|
783 |
+
1. [Stable Diffusion v1.1](https://huggingface.co/CompVis/stable-diffusion-v1-1)
|
784 |
+
2. [Stable Diffusion v1.2](https://huggingface.co/CompVis/stable-diffusion-v1-2)
|
785 |
+
3. [Stable Diffusion v1.3](https://huggingface.co/CompVis/stable-diffusion-v1-3)
|
786 |
+
4. [Stable Diffusion v1.4](https://huggingface.co/CompVis/stable-diffusion-v1-4)
|
787 |
+
|
788 |
+
```python
|
789 |
+
from diffusers import DiffusionPipeline
|
790 |
+
import matplotlib.pyplot as plt
|
791 |
+
|
792 |
+
pipe = DiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', custom_pipeline='suvadityamuk/StableDiffusionComparison')
|
793 |
+
pipe.enable_attention_slicing()
|
794 |
+
pipe = pipe.to('cuda')
|
795 |
+
prompt = "an astronaut riding a horse on mars"
|
796 |
+
output = pipe(prompt)
|
797 |
+
|
798 |
+
plt.subplots(2,2,1)
|
799 |
+
plt.imshow(output.images[0])
|
800 |
+
plt.title('Stable Diffusion v1.1')
|
801 |
+
plt.axis('off')
|
802 |
+
plt.subplots(2,2,2)
|
803 |
+
plt.imshow(output.images[1])
|
804 |
+
plt.title('Stable Diffusion v1.2')
|
805 |
+
plt.axis('off')
|
806 |
+
plt.subplots(2,2,3)
|
807 |
+
plt.imshow(output.images[2])
|
808 |
+
plt.title('Stable Diffusion v1.3')
|
809 |
+
plt.axis('off')
|
810 |
+
plt.subplots(2,2,4)
|
811 |
+
plt.imshow(output.images[3])
|
812 |
+
plt.title('Stable Diffusion v1.4')
|
813 |
+
plt.axis('off')
|
814 |
+
|
815 |
+
plt.show()
|
816 |
+
```python
|
817 |
+
|
818 |
+
As a result, you can look at a grid of all 4 generated images being shown together, that captures a difference the advancement of the training between the 4 checkpoints.
|
v0.11.0/bit_diffusion.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel
|
6 |
+
from diffusers.pipeline_utils import ImagePipelineOutput
|
7 |
+
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
|
8 |
+
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
|
9 |
+
from einops import rearrange, reduce
|
10 |
+
|
11 |
+
|
12 |
+
BITS = 8
|
13 |
+
|
14 |
+
|
15 |
+
# convert to bit representations and back taken from https://github.com/lucidrains/bit-diffusion/blob/main/bit_diffusion/bit_diffusion.py
|
16 |
+
def decimal_to_bits(x, bits=BITS):
|
17 |
+
"""expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1"""
|
18 |
+
device = x.device
|
19 |
+
|
20 |
+
x = (x * 255).int().clamp(0, 255)
|
21 |
+
|
22 |
+
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device)
|
23 |
+
mask = rearrange(mask, "d -> d 1 1")
|
24 |
+
x = rearrange(x, "b c h w -> b c 1 h w")
|
25 |
+
|
26 |
+
bits = ((x & mask) != 0).float()
|
27 |
+
bits = rearrange(bits, "b c d h w -> b (c d) h w")
|
28 |
+
bits = bits * 2 - 1
|
29 |
+
return bits
|
30 |
+
|
31 |
+
|
32 |
+
def bits_to_decimal(x, bits=BITS):
|
33 |
+
"""expects bits from -1 to 1, outputs image tensor from 0 to 1"""
|
34 |
+
device = x.device
|
35 |
+
|
36 |
+
x = (x > 0).int()
|
37 |
+
mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32)
|
38 |
+
|
39 |
+
mask = rearrange(mask, "d -> d 1 1")
|
40 |
+
x = rearrange(x, "b (c d) h w -> b c d h w", d=8)
|
41 |
+
dec = reduce(x * mask, "b c d h w -> b c h w", "sum")
|
42 |
+
return (dec / 255).clamp(0.0, 1.0)
|
43 |
+
|
44 |
+
|
45 |
+
# modified scheduler step functions for clamping the predicted x_0 between -bit_scale and +bit_scale
|
46 |
+
def ddim_bit_scheduler_step(
|
47 |
+
self,
|
48 |
+
model_output: torch.FloatTensor,
|
49 |
+
timestep: int,
|
50 |
+
sample: torch.FloatTensor,
|
51 |
+
eta: float = 0.0,
|
52 |
+
use_clipped_model_output: bool = True,
|
53 |
+
generator=None,
|
54 |
+
return_dict: bool = True,
|
55 |
+
) -> Union[DDIMSchedulerOutput, Tuple]:
|
56 |
+
"""
|
57 |
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
58 |
+
process from the learned model outputs (most often the predicted noise).
|
59 |
+
Args:
|
60 |
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
61 |
+
timestep (`int`): current discrete timestep in the diffusion chain.
|
62 |
+
sample (`torch.FloatTensor`):
|
63 |
+
current instance of sample being created by diffusion process.
|
64 |
+
eta (`float`): weight of noise for added noise in diffusion step.
|
65 |
+
use_clipped_model_output (`bool`): TODO
|
66 |
+
generator: random number generator.
|
67 |
+
return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class
|
68 |
+
Returns:
|
69 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
|
70 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
71 |
+
returning a tuple, the first element is the sample tensor.
|
72 |
+
"""
|
73 |
+
if self.num_inference_steps is None:
|
74 |
+
raise ValueError(
|
75 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
76 |
+
)
|
77 |
+
|
78 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
79 |
+
# Ideally, read DDIM paper in-detail understanding
|
80 |
+
|
81 |
+
# Notation (<variable name> -> <name in paper>
|
82 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
83 |
+
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
84 |
+
# - std_dev_t -> sigma_t
|
85 |
+
# - eta -> η
|
86 |
+
# - pred_sample_direction -> "direction pointing to x_t"
|
87 |
+
# - pred_prev_sample -> "x_t-1"
|
88 |
+
|
89 |
+
# 1. get previous step value (=t-1)
|
90 |
+
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
91 |
+
|
92 |
+
# 2. compute alphas, betas
|
93 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
94 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
95 |
+
|
96 |
+
beta_prod_t = 1 - alpha_prod_t
|
97 |
+
|
98 |
+
# 3. compute predicted original sample from predicted noise also called
|
99 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
100 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
101 |
+
|
102 |
+
# 4. Clip "predicted x_0"
|
103 |
+
scale = self.bit_scale
|
104 |
+
if self.config.clip_sample:
|
105 |
+
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
|
106 |
+
|
107 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
108 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
109 |
+
variance = self._get_variance(timestep, prev_timestep)
|
110 |
+
std_dev_t = eta * variance ** (0.5)
|
111 |
+
|
112 |
+
if use_clipped_model_output:
|
113 |
+
# the model_output is always re-derived from the clipped x_0 in Glide
|
114 |
+
model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
115 |
+
|
116 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
117 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output
|
118 |
+
|
119 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
120 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
121 |
+
|
122 |
+
if eta > 0:
|
123 |
+
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
|
124 |
+
device = model_output.device if torch.is_tensor(model_output) else "cpu"
|
125 |
+
noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device)
|
126 |
+
variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise
|
127 |
+
|
128 |
+
prev_sample = prev_sample + variance
|
129 |
+
|
130 |
+
if not return_dict:
|
131 |
+
return (prev_sample,)
|
132 |
+
|
133 |
+
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
134 |
+
|
135 |
+
|
136 |
+
def ddpm_bit_scheduler_step(
|
137 |
+
self,
|
138 |
+
model_output: torch.FloatTensor,
|
139 |
+
timestep: int,
|
140 |
+
sample: torch.FloatTensor,
|
141 |
+
prediction_type="epsilon",
|
142 |
+
generator=None,
|
143 |
+
return_dict: bool = True,
|
144 |
+
) -> Union[DDPMSchedulerOutput, Tuple]:
|
145 |
+
"""
|
146 |
+
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
|
147 |
+
process from the learned model outputs (most often the predicted noise).
|
148 |
+
Args:
|
149 |
+
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
|
150 |
+
timestep (`int`): current discrete timestep in the diffusion chain.
|
151 |
+
sample (`torch.FloatTensor`):
|
152 |
+
current instance of sample being created by diffusion process.
|
153 |
+
prediction_type (`str`, default `epsilon`):
|
154 |
+
indicates whether the model predicts the noise (epsilon), or the samples (`sample`).
|
155 |
+
generator: random number generator.
|
156 |
+
return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class
|
157 |
+
Returns:
|
158 |
+
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`:
|
159 |
+
[`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
160 |
+
returning a tuple, the first element is the sample tensor.
|
161 |
+
"""
|
162 |
+
t = timestep
|
163 |
+
|
164 |
+
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
165 |
+
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
166 |
+
else:
|
167 |
+
predicted_variance = None
|
168 |
+
|
169 |
+
# 1. compute alphas, betas
|
170 |
+
alpha_prod_t = self.alphas_cumprod[t]
|
171 |
+
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one
|
172 |
+
beta_prod_t = 1 - alpha_prod_t
|
173 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
174 |
+
|
175 |
+
# 2. compute predicted original sample from predicted noise also called
|
176 |
+
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
177 |
+
if prediction_type == "epsilon":
|
178 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
179 |
+
elif prediction_type == "sample":
|
180 |
+
pred_original_sample = model_output
|
181 |
+
else:
|
182 |
+
raise ValueError(f"Unsupported prediction_type {prediction_type}.")
|
183 |
+
|
184 |
+
# 3. Clip "predicted x_0"
|
185 |
+
scale = self.bit_scale
|
186 |
+
if self.config.clip_sample:
|
187 |
+
pred_original_sample = torch.clamp(pred_original_sample, -scale, scale)
|
188 |
+
|
189 |
+
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
190 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
191 |
+
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t
|
192 |
+
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t
|
193 |
+
|
194 |
+
# 5. Compute predicted previous sample µ_t
|
195 |
+
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
196 |
+
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
197 |
+
|
198 |
+
# 6. Add noise
|
199 |
+
variance = 0
|
200 |
+
if t > 0:
|
201 |
+
noise = torch.randn(
|
202 |
+
model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator
|
203 |
+
).to(model_output.device)
|
204 |
+
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise
|
205 |
+
|
206 |
+
pred_prev_sample = pred_prev_sample + variance
|
207 |
+
|
208 |
+
if not return_dict:
|
209 |
+
return (pred_prev_sample,)
|
210 |
+
|
211 |
+
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
212 |
+
|
213 |
+
|
214 |
+
class BitDiffusion(DiffusionPipeline):
|
215 |
+
def __init__(
|
216 |
+
self,
|
217 |
+
unet: UNet2DConditionModel,
|
218 |
+
scheduler: Union[DDIMScheduler, DDPMScheduler],
|
219 |
+
bit_scale: Optional[float] = 1.0,
|
220 |
+
):
|
221 |
+
super().__init__()
|
222 |
+
self.bit_scale = bit_scale
|
223 |
+
self.scheduler.step = (
|
224 |
+
ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step
|
225 |
+
)
|
226 |
+
|
227 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
228 |
+
|
229 |
+
@torch.no_grad()
|
230 |
+
def __call__(
|
231 |
+
self,
|
232 |
+
height: Optional[int] = 256,
|
233 |
+
width: Optional[int] = 256,
|
234 |
+
num_inference_steps: Optional[int] = 50,
|
235 |
+
generator: Optional[torch.Generator] = None,
|
236 |
+
batch_size: Optional[int] = 1,
|
237 |
+
output_type: Optional[str] = "pil",
|
238 |
+
return_dict: bool = True,
|
239 |
+
**kwargs,
|
240 |
+
) -> Union[Tuple, ImagePipelineOutput]:
|
241 |
+
latents = torch.randn(
|
242 |
+
(batch_size, self.unet.in_channels, height, width),
|
243 |
+
generator=generator,
|
244 |
+
)
|
245 |
+
latents = decimal_to_bits(latents) * self.bit_scale
|
246 |
+
latents = latents.to(self.device)
|
247 |
+
|
248 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
249 |
+
|
250 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
251 |
+
# predict the noise residual
|
252 |
+
noise_pred = self.unet(latents, t).sample
|
253 |
+
|
254 |
+
# compute the previous noisy sample x_t -> x_t-1
|
255 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
256 |
+
|
257 |
+
image = bits_to_decimal(latents)
|
258 |
+
|
259 |
+
if output_type == "pil":
|
260 |
+
image = self.numpy_to_pil(image)
|
261 |
+
|
262 |
+
if not return_dict:
|
263 |
+
return (image,)
|
264 |
+
|
265 |
+
return ImagePipelineOutput(images=image)
|
v0.11.0/checkpoint_merger.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import os
|
3 |
+
from typing import Dict, List, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from diffusers import DiffusionPipeline, __version__
|
8 |
+
from diffusers.pipeline_utils import (
|
9 |
+
CONFIG_NAME,
|
10 |
+
DIFFUSERS_CACHE,
|
11 |
+
ONNX_WEIGHTS_NAME,
|
12 |
+
SCHEDULER_CONFIG_NAME,
|
13 |
+
WEIGHTS_NAME,
|
14 |
+
)
|
15 |
+
from huggingface_hub import snapshot_download
|
16 |
+
|
17 |
+
|
18 |
+
class CheckpointMergerPipeline(DiffusionPipeline):
|
19 |
+
"""
|
20 |
+
A class that that supports merging diffusion models based on the discussion here:
|
21 |
+
https://github.com/huggingface/diffusers/issues/877
|
22 |
+
|
23 |
+
Example usage:-
|
24 |
+
|
25 |
+
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="checkpoint_merger.py")
|
26 |
+
|
27 |
+
merged_pipe = pipe.merge(["CompVis/stable-diffusion-v1-4","prompthero/openjourney"], interp = 'inv_sigmoid', alpha = 0.8, force = True)
|
28 |
+
|
29 |
+
merged_pipe.to('cuda')
|
30 |
+
|
31 |
+
prompt = "An astronaut riding a unicycle on Mars"
|
32 |
+
|
33 |
+
results = merged_pipe(prompt)
|
34 |
+
|
35 |
+
## For more details, see the docstring for the merge method.
|
36 |
+
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self):
|
40 |
+
super().__init__()
|
41 |
+
|
42 |
+
def _compare_model_configs(self, dict0, dict1):
|
43 |
+
if dict0 == dict1:
|
44 |
+
return True
|
45 |
+
else:
|
46 |
+
config0, meta_keys0 = self._remove_meta_keys(dict0)
|
47 |
+
config1, meta_keys1 = self._remove_meta_keys(dict1)
|
48 |
+
if config0 == config1:
|
49 |
+
print(f"Warning !: Mismatch in keys {meta_keys0} and {meta_keys1}.")
|
50 |
+
return True
|
51 |
+
return False
|
52 |
+
|
53 |
+
def _remove_meta_keys(self, config_dict: Dict):
|
54 |
+
meta_keys = []
|
55 |
+
temp_dict = config_dict.copy()
|
56 |
+
for key in config_dict.keys():
|
57 |
+
if key.startswith("_"):
|
58 |
+
temp_dict.pop(key)
|
59 |
+
meta_keys.append(key)
|
60 |
+
return (temp_dict, meta_keys)
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
def merge(self, pretrained_model_name_or_path_list: List[Union[str, os.PathLike]], **kwargs):
|
64 |
+
"""
|
65 |
+
Returns a new pipeline object of the class 'DiffusionPipeline' with the merged checkpoints(weights) of the models passed
|
66 |
+
in the argument 'pretrained_model_name_or_path_list' as a list.
|
67 |
+
|
68 |
+
Parameters:
|
69 |
+
-----------
|
70 |
+
pretrained_model_name_or_path_list : A list of valid pretrained model names in the HuggingFace hub or paths to locally stored models in the HuggingFace format.
|
71 |
+
|
72 |
+
**kwargs:
|
73 |
+
Supports all the default DiffusionPipeline.get_config_dict kwargs viz..
|
74 |
+
|
75 |
+
cache_dir, resume_download, force_download, proxies, local_files_only, use_auth_token, revision, torch_dtype, device_map.
|
76 |
+
|
77 |
+
alpha - The interpolation parameter. Ranges from 0 to 1. It affects the ratio in which the checkpoints are merged. A 0.8 alpha
|
78 |
+
would mean that the first model checkpoints would affect the final result far less than an alpha of 0.2
|
79 |
+
|
80 |
+
interp - The interpolation method to use for the merging. Supports "sigmoid", "inv_sigmoid", "add_difference" and None.
|
81 |
+
Passing None uses the default interpolation which is weighted sum interpolation. For merging three checkpoints, only "add_difference" is supported.
|
82 |
+
|
83 |
+
force - Whether to ignore mismatch in model_config.json for the current models. Defaults to False.
|
84 |
+
|
85 |
+
"""
|
86 |
+
# Default kwargs from DiffusionPipeline
|
87 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
88 |
+
resume_download = kwargs.pop("resume_download", False)
|
89 |
+
force_download = kwargs.pop("force_download", False)
|
90 |
+
proxies = kwargs.pop("proxies", None)
|
91 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
92 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
93 |
+
revision = kwargs.pop("revision", None)
|
94 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
95 |
+
device_map = kwargs.pop("device_map", None)
|
96 |
+
|
97 |
+
alpha = kwargs.pop("alpha", 0.5)
|
98 |
+
interp = kwargs.pop("interp", None)
|
99 |
+
|
100 |
+
print("Recieved list", pretrained_model_name_or_path_list)
|
101 |
+
|
102 |
+
checkpoint_count = len(pretrained_model_name_or_path_list)
|
103 |
+
# Ignore result from model_index_json comparision of the two checkpoints
|
104 |
+
force = kwargs.pop("force", False)
|
105 |
+
|
106 |
+
# If less than 2 checkpoints, nothing to merge. If more than 3, not supported for now.
|
107 |
+
if checkpoint_count > 3 or checkpoint_count < 2:
|
108 |
+
raise ValueError(
|
109 |
+
"Received incorrect number of checkpoints to merge. Ensure that either 2 or 3 checkpoints are being"
|
110 |
+
" passed."
|
111 |
+
)
|
112 |
+
|
113 |
+
print("Received the right number of checkpoints")
|
114 |
+
# chkpt0, chkpt1 = pretrained_model_name_or_path_list[0:2]
|
115 |
+
# chkpt2 = pretrained_model_name_or_path_list[2] if checkpoint_count == 3 else None
|
116 |
+
|
117 |
+
# Validate that the checkpoints can be merged
|
118 |
+
# Step 1: Load the model config and compare the checkpoints. We'll compare the model_index.json first while ignoring the keys starting with '_'
|
119 |
+
config_dicts = []
|
120 |
+
for pretrained_model_name_or_path in pretrained_model_name_or_path_list:
|
121 |
+
if not os.path.isdir(pretrained_model_name_or_path):
|
122 |
+
config_dict = DiffusionPipeline.get_config_dict(
|
123 |
+
pretrained_model_name_or_path,
|
124 |
+
cache_dir=cache_dir,
|
125 |
+
resume_download=resume_download,
|
126 |
+
force_download=force_download,
|
127 |
+
proxies=proxies,
|
128 |
+
local_files_only=local_files_only,
|
129 |
+
use_auth_token=use_auth_token,
|
130 |
+
revision=revision,
|
131 |
+
)
|
132 |
+
config_dicts.append(config_dict)
|
133 |
+
|
134 |
+
comparison_result = True
|
135 |
+
for idx in range(1, len(config_dicts)):
|
136 |
+
comparison_result &= self._compare_model_configs(config_dicts[idx - 1], config_dicts[idx])
|
137 |
+
if not force and comparison_result is False:
|
138 |
+
raise ValueError("Incompatible checkpoints. Please check model_index.json for the models.")
|
139 |
+
print(config_dicts[0], config_dicts[1])
|
140 |
+
print("Compatible model_index.json files found")
|
141 |
+
# Step 2: Basic Validation has succeeded. Let's download the models and save them into our local files.
|
142 |
+
cached_folders = []
|
143 |
+
for pretrained_model_name_or_path, config_dict in zip(pretrained_model_name_or_path_list, config_dicts):
|
144 |
+
folder_names = [k for k in config_dict.keys() if not k.startswith("_")]
|
145 |
+
allow_patterns = [os.path.join(k, "*") for k in folder_names]
|
146 |
+
allow_patterns += [
|
147 |
+
WEIGHTS_NAME,
|
148 |
+
SCHEDULER_CONFIG_NAME,
|
149 |
+
CONFIG_NAME,
|
150 |
+
ONNX_WEIGHTS_NAME,
|
151 |
+
DiffusionPipeline.config_name,
|
152 |
+
]
|
153 |
+
requested_pipeline_class = config_dict.get("_class_name")
|
154 |
+
user_agent = {"diffusers": __version__, "pipeline_class": requested_pipeline_class}
|
155 |
+
|
156 |
+
cached_folder = snapshot_download(
|
157 |
+
pretrained_model_name_or_path,
|
158 |
+
cache_dir=cache_dir,
|
159 |
+
resume_download=resume_download,
|
160 |
+
proxies=proxies,
|
161 |
+
local_files_only=local_files_only,
|
162 |
+
use_auth_token=use_auth_token,
|
163 |
+
revision=revision,
|
164 |
+
allow_patterns=allow_patterns,
|
165 |
+
user_agent=user_agent,
|
166 |
+
)
|
167 |
+
print("Cached Folder", cached_folder)
|
168 |
+
cached_folders.append(cached_folder)
|
169 |
+
|
170 |
+
# Step 3:-
|
171 |
+
# Load the first checkpoint as a diffusion pipeline and modify it's module state_dict in place
|
172 |
+
final_pipe = DiffusionPipeline.from_pretrained(
|
173 |
+
cached_folders[0], torch_dtype=torch_dtype, device_map=device_map
|
174 |
+
)
|
175 |
+
|
176 |
+
checkpoint_path_2 = None
|
177 |
+
if len(cached_folders) > 2:
|
178 |
+
checkpoint_path_2 = os.path.join(cached_folders[2])
|
179 |
+
|
180 |
+
if interp == "sigmoid":
|
181 |
+
theta_func = CheckpointMergerPipeline.sigmoid
|
182 |
+
elif interp == "inv_sigmoid":
|
183 |
+
theta_func = CheckpointMergerPipeline.inv_sigmoid
|
184 |
+
elif interp == "add_diff":
|
185 |
+
theta_func = CheckpointMergerPipeline.add_difference
|
186 |
+
else:
|
187 |
+
theta_func = CheckpointMergerPipeline.weighted_sum
|
188 |
+
|
189 |
+
# Find each module's state dict.
|
190 |
+
for attr in final_pipe.config.keys():
|
191 |
+
if not attr.startswith("_"):
|
192 |
+
checkpoint_path_1 = os.path.join(cached_folders[1], attr)
|
193 |
+
if os.path.exists(checkpoint_path_1):
|
194 |
+
files = glob.glob(os.path.join(checkpoint_path_1, "*.bin"))
|
195 |
+
checkpoint_path_1 = files[0] if len(files) > 0 else None
|
196 |
+
if checkpoint_path_2 is not None and os.path.exists(checkpoint_path_2):
|
197 |
+
files = glob.glob(os.path.join(checkpoint_path_2, "*.bin"))
|
198 |
+
checkpoint_path_2 = files[0] if len(files) > 0 else None
|
199 |
+
# For an attr if both checkpoint_path_1 and 2 are None, ignore.
|
200 |
+
# If atleast one is present, deal with it according to interp method, of course only if the state_dict keys match.
|
201 |
+
if checkpoint_path_1 is None and checkpoint_path_2 is None:
|
202 |
+
print("SKIPPING ATTR ", attr)
|
203 |
+
continue
|
204 |
+
try:
|
205 |
+
module = getattr(final_pipe, attr)
|
206 |
+
theta_0 = getattr(module, "state_dict")
|
207 |
+
theta_0 = theta_0()
|
208 |
+
|
209 |
+
update_theta_0 = getattr(module, "load_state_dict")
|
210 |
+
theta_1 = torch.load(checkpoint_path_1)
|
211 |
+
|
212 |
+
theta_2 = torch.load(checkpoint_path_2) if checkpoint_path_2 else None
|
213 |
+
|
214 |
+
if not theta_0.keys() == theta_1.keys():
|
215 |
+
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
|
216 |
+
continue
|
217 |
+
if theta_2 and not theta_1.keys() == theta_2.keys():
|
218 |
+
print("SKIPPING ATTR ", attr, " DUE TO MISMATCH")
|
219 |
+
except:
|
220 |
+
print("SKIPPING ATTR ", attr)
|
221 |
+
continue
|
222 |
+
print("Found dicts for")
|
223 |
+
print(attr)
|
224 |
+
print(checkpoint_path_1)
|
225 |
+
print(checkpoint_path_2)
|
226 |
+
|
227 |
+
for key in theta_0.keys():
|
228 |
+
if theta_2:
|
229 |
+
theta_0[key] = theta_func(theta_0[key], theta_1[key], theta_2[key], alpha)
|
230 |
+
else:
|
231 |
+
theta_0[key] = theta_func(theta_0[key], theta_1[key], None, alpha)
|
232 |
+
|
233 |
+
del theta_1
|
234 |
+
del theta_2
|
235 |
+
update_theta_0(theta_0)
|
236 |
+
|
237 |
+
del theta_0
|
238 |
+
print("Diffusion pipeline successfully updated with merged weights")
|
239 |
+
|
240 |
+
return final_pipe
|
241 |
+
|
242 |
+
@staticmethod
|
243 |
+
def weighted_sum(theta0, theta1, theta2, alpha):
|
244 |
+
return ((1 - alpha) * theta0) + (alpha * theta1)
|
245 |
+
|
246 |
+
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
247 |
+
@staticmethod
|
248 |
+
def sigmoid(theta0, theta1, theta2, alpha):
|
249 |
+
alpha = alpha * alpha * (3 - (2 * alpha))
|
250 |
+
return theta0 + ((theta1 - theta0) * alpha)
|
251 |
+
|
252 |
+
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
|
253 |
+
@staticmethod
|
254 |
+
def inv_sigmoid(theta0, theta1, theta2, alpha):
|
255 |
+
import math
|
256 |
+
|
257 |
+
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
|
258 |
+
return theta0 + ((theta1 - theta0) * alpha)
|
259 |
+
|
260 |
+
@staticmethod
|
261 |
+
def add_difference(theta0, theta1, theta2, alpha):
|
262 |
+
return theta0 + (theta1 - theta2) * (1.0 - alpha)
|
v0.11.0/clip_guided_stable_diffusion.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
from torch.nn import functional as F
|
7 |
+
|
8 |
+
from diffusers import (
|
9 |
+
AutoencoderKL,
|
10 |
+
DDIMScheduler,
|
11 |
+
DiffusionPipeline,
|
12 |
+
LMSDiscreteScheduler,
|
13 |
+
PNDMScheduler,
|
14 |
+
UNet2DConditionModel,
|
15 |
+
)
|
16 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
17 |
+
from torchvision import transforms
|
18 |
+
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer
|
19 |
+
|
20 |
+
|
21 |
+
class MakeCutouts(nn.Module):
|
22 |
+
def __init__(self, cut_size, cut_power=1.0):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
self.cut_size = cut_size
|
26 |
+
self.cut_power = cut_power
|
27 |
+
|
28 |
+
def forward(self, pixel_values, num_cutouts):
|
29 |
+
sideY, sideX = pixel_values.shape[2:4]
|
30 |
+
max_size = min(sideX, sideY)
|
31 |
+
min_size = min(sideX, sideY, self.cut_size)
|
32 |
+
cutouts = []
|
33 |
+
for _ in range(num_cutouts):
|
34 |
+
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size)
|
35 |
+
offsetx = torch.randint(0, sideX - size + 1, ())
|
36 |
+
offsety = torch.randint(0, sideY - size + 1, ())
|
37 |
+
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size]
|
38 |
+
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size))
|
39 |
+
return torch.cat(cutouts)
|
40 |
+
|
41 |
+
|
42 |
+
def spherical_dist_loss(x, y):
|
43 |
+
x = F.normalize(x, dim=-1)
|
44 |
+
y = F.normalize(y, dim=-1)
|
45 |
+
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2)
|
46 |
+
|
47 |
+
|
48 |
+
def set_requires_grad(model, value):
|
49 |
+
for param in model.parameters():
|
50 |
+
param.requires_grad = value
|
51 |
+
|
52 |
+
|
53 |
+
class CLIPGuidedStableDiffusion(DiffusionPipeline):
|
54 |
+
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000
|
55 |
+
- https://github.com/Jack000/glid-3-xl
|
56 |
+
- https://github.dev/crowsonkb/k-diffusion
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vae: AutoencoderKL,
|
62 |
+
text_encoder: CLIPTextModel,
|
63 |
+
clip_model: CLIPModel,
|
64 |
+
tokenizer: CLIPTokenizer,
|
65 |
+
unet: UNet2DConditionModel,
|
66 |
+
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
|
67 |
+
feature_extractor: CLIPFeatureExtractor,
|
68 |
+
):
|
69 |
+
super().__init__()
|
70 |
+
self.register_modules(
|
71 |
+
vae=vae,
|
72 |
+
text_encoder=text_encoder,
|
73 |
+
clip_model=clip_model,
|
74 |
+
tokenizer=tokenizer,
|
75 |
+
unet=unet,
|
76 |
+
scheduler=scheduler,
|
77 |
+
feature_extractor=feature_extractor,
|
78 |
+
)
|
79 |
+
|
80 |
+
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std)
|
81 |
+
cut_out_size = (
|
82 |
+
feature_extractor.size
|
83 |
+
if isinstance(feature_extractor.size, int)
|
84 |
+
else feature_extractor.size["shortest_edge"]
|
85 |
+
)
|
86 |
+
self.make_cutouts = MakeCutouts(cut_out_size)
|
87 |
+
|
88 |
+
set_requires_grad(self.text_encoder, False)
|
89 |
+
set_requires_grad(self.clip_model, False)
|
90 |
+
|
91 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
92 |
+
if slice_size == "auto":
|
93 |
+
# half the attention head size is usually a good trade-off between
|
94 |
+
# speed and memory
|
95 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
96 |
+
self.unet.set_attention_slice(slice_size)
|
97 |
+
|
98 |
+
def disable_attention_slicing(self):
|
99 |
+
self.enable_attention_slicing(None)
|
100 |
+
|
101 |
+
def freeze_vae(self):
|
102 |
+
set_requires_grad(self.vae, False)
|
103 |
+
|
104 |
+
def unfreeze_vae(self):
|
105 |
+
set_requires_grad(self.vae, True)
|
106 |
+
|
107 |
+
def freeze_unet(self):
|
108 |
+
set_requires_grad(self.unet, False)
|
109 |
+
|
110 |
+
def unfreeze_unet(self):
|
111 |
+
set_requires_grad(self.unet, True)
|
112 |
+
|
113 |
+
@torch.enable_grad()
|
114 |
+
def cond_fn(
|
115 |
+
self,
|
116 |
+
latents,
|
117 |
+
timestep,
|
118 |
+
index,
|
119 |
+
text_embeddings,
|
120 |
+
noise_pred_original,
|
121 |
+
text_embeddings_clip,
|
122 |
+
clip_guidance_scale,
|
123 |
+
num_cutouts,
|
124 |
+
use_cutouts=True,
|
125 |
+
):
|
126 |
+
latents = latents.detach().requires_grad_()
|
127 |
+
|
128 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
129 |
+
sigma = self.scheduler.sigmas[index]
|
130 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
131 |
+
latent_model_input = latents / ((sigma**2 + 1) ** 0.5)
|
132 |
+
else:
|
133 |
+
latent_model_input = latents
|
134 |
+
|
135 |
+
# predict the noise residual
|
136 |
+
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample
|
137 |
+
|
138 |
+
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)):
|
139 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
140 |
+
beta_prod_t = 1 - alpha_prod_t
|
141 |
+
# compute predicted original sample from predicted noise also called
|
142 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
143 |
+
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5)
|
144 |
+
|
145 |
+
fac = torch.sqrt(beta_prod_t)
|
146 |
+
sample = pred_original_sample * (fac) + latents * (1 - fac)
|
147 |
+
elif isinstance(self.scheduler, LMSDiscreteScheduler):
|
148 |
+
sigma = self.scheduler.sigmas[index]
|
149 |
+
sample = latents - sigma * noise_pred
|
150 |
+
else:
|
151 |
+
raise ValueError(f"scheduler type {type(self.scheduler)} not supported")
|
152 |
+
|
153 |
+
sample = 1 / 0.18215 * sample
|
154 |
+
image = self.vae.decode(sample).sample
|
155 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
156 |
+
|
157 |
+
if use_cutouts:
|
158 |
+
image = self.make_cutouts(image, num_cutouts)
|
159 |
+
else:
|
160 |
+
image = transforms.Resize(self.feature_extractor.size)(image)
|
161 |
+
image = self.normalize(image).to(latents.dtype)
|
162 |
+
|
163 |
+
image_embeddings_clip = self.clip_model.get_image_features(image)
|
164 |
+
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
165 |
+
|
166 |
+
if use_cutouts:
|
167 |
+
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip)
|
168 |
+
dists = dists.view([num_cutouts, sample.shape[0], -1])
|
169 |
+
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale
|
170 |
+
else:
|
171 |
+
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale
|
172 |
+
|
173 |
+
grads = -torch.autograd.grad(loss, latents)[0]
|
174 |
+
|
175 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
176 |
+
latents = latents.detach() + grads * (sigma**2)
|
177 |
+
noise_pred = noise_pred_original
|
178 |
+
else:
|
179 |
+
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads
|
180 |
+
return noise_pred, latents
|
181 |
+
|
182 |
+
@torch.no_grad()
|
183 |
+
def __call__(
|
184 |
+
self,
|
185 |
+
prompt: Union[str, List[str]],
|
186 |
+
height: Optional[int] = 512,
|
187 |
+
width: Optional[int] = 512,
|
188 |
+
num_inference_steps: Optional[int] = 50,
|
189 |
+
guidance_scale: Optional[float] = 7.5,
|
190 |
+
num_images_per_prompt: Optional[int] = 1,
|
191 |
+
eta: float = 0.0,
|
192 |
+
clip_guidance_scale: Optional[float] = 100,
|
193 |
+
clip_prompt: Optional[Union[str, List[str]]] = None,
|
194 |
+
num_cutouts: Optional[int] = 4,
|
195 |
+
use_cutouts: Optional[bool] = True,
|
196 |
+
generator: Optional[torch.Generator] = None,
|
197 |
+
latents: Optional[torch.FloatTensor] = None,
|
198 |
+
output_type: Optional[str] = "pil",
|
199 |
+
return_dict: bool = True,
|
200 |
+
):
|
201 |
+
if isinstance(prompt, str):
|
202 |
+
batch_size = 1
|
203 |
+
elif isinstance(prompt, list):
|
204 |
+
batch_size = len(prompt)
|
205 |
+
else:
|
206 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
207 |
+
|
208 |
+
if height % 8 != 0 or width % 8 != 0:
|
209 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
210 |
+
|
211 |
+
# get prompt text embeddings
|
212 |
+
text_input = self.tokenizer(
|
213 |
+
prompt,
|
214 |
+
padding="max_length",
|
215 |
+
max_length=self.tokenizer.model_max_length,
|
216 |
+
truncation=True,
|
217 |
+
return_tensors="pt",
|
218 |
+
)
|
219 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
220 |
+
# duplicate text embeddings for each generation per prompt
|
221 |
+
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
222 |
+
|
223 |
+
if clip_guidance_scale > 0:
|
224 |
+
if clip_prompt is not None:
|
225 |
+
clip_text_input = self.tokenizer(
|
226 |
+
clip_prompt,
|
227 |
+
padding="max_length",
|
228 |
+
max_length=self.tokenizer.model_max_length,
|
229 |
+
truncation=True,
|
230 |
+
return_tensors="pt",
|
231 |
+
).input_ids.to(self.device)
|
232 |
+
else:
|
233 |
+
clip_text_input = text_input.input_ids.to(self.device)
|
234 |
+
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input)
|
235 |
+
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True)
|
236 |
+
# duplicate text embeddings clip for each generation per prompt
|
237 |
+
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0)
|
238 |
+
|
239 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
240 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
241 |
+
# corresponds to doing no classifier free guidance.
|
242 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
243 |
+
# get unconditional embeddings for classifier free guidance
|
244 |
+
if do_classifier_free_guidance:
|
245 |
+
max_length = text_input.input_ids.shape[-1]
|
246 |
+
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt")
|
247 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
248 |
+
# duplicate unconditional embeddings for each generation per prompt
|
249 |
+
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0)
|
250 |
+
|
251 |
+
# For classifier free guidance, we need to do two forward passes.
|
252 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
253 |
+
# to avoid doing two forward passes
|
254 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
255 |
+
|
256 |
+
# get the initial random noise unless the user supplied it
|
257 |
+
|
258 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
259 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
260 |
+
# However this currently doesn't work in `mps`.
|
261 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
262 |
+
latents_dtype = text_embeddings.dtype
|
263 |
+
if latents is None:
|
264 |
+
if self.device.type == "mps":
|
265 |
+
# randn does not work reproducibly on mps
|
266 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
267 |
+
self.device
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
271 |
+
else:
|
272 |
+
if latents.shape != latents_shape:
|
273 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
274 |
+
latents = latents.to(self.device)
|
275 |
+
|
276 |
+
# set timesteps
|
277 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
278 |
+
extra_set_kwargs = {}
|
279 |
+
if accepts_offset:
|
280 |
+
extra_set_kwargs["offset"] = 1
|
281 |
+
|
282 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
283 |
+
|
284 |
+
# Some schedulers like PNDM have timesteps as arrays
|
285 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
286 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
287 |
+
|
288 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
289 |
+
latents = latents * self.scheduler.init_noise_sigma
|
290 |
+
|
291 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
292 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
293 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
294 |
+
# and should be between [0, 1]
|
295 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
296 |
+
extra_step_kwargs = {}
|
297 |
+
if accepts_eta:
|
298 |
+
extra_step_kwargs["eta"] = eta
|
299 |
+
|
300 |
+
# check if the scheduler accepts generator
|
301 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
302 |
+
if accepts_generator:
|
303 |
+
extra_step_kwargs["generator"] = generator
|
304 |
+
|
305 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
306 |
+
# expand the latents if we are doing classifier free guidance
|
307 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
308 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
309 |
+
|
310 |
+
# predict the noise residual
|
311 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
312 |
+
|
313 |
+
# perform classifier free guidance
|
314 |
+
if do_classifier_free_guidance:
|
315 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
316 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
317 |
+
|
318 |
+
# perform clip guidance
|
319 |
+
if clip_guidance_scale > 0:
|
320 |
+
text_embeddings_for_guidance = (
|
321 |
+
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings
|
322 |
+
)
|
323 |
+
noise_pred, latents = self.cond_fn(
|
324 |
+
latents,
|
325 |
+
t,
|
326 |
+
i,
|
327 |
+
text_embeddings_for_guidance,
|
328 |
+
noise_pred,
|
329 |
+
text_embeddings_clip,
|
330 |
+
clip_guidance_scale,
|
331 |
+
num_cutouts,
|
332 |
+
use_cutouts,
|
333 |
+
)
|
334 |
+
|
335 |
+
# compute the previous noisy sample x_t -> x_t-1
|
336 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
337 |
+
|
338 |
+
# scale and decode the image latents with vae
|
339 |
+
latents = 1 / 0.18215 * latents
|
340 |
+
image = self.vae.decode(latents).sample
|
341 |
+
|
342 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
343 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
344 |
+
|
345 |
+
if output_type == "pil":
|
346 |
+
image = self.numpy_to_pil(image)
|
347 |
+
|
348 |
+
if not return_dict:
|
349 |
+
return (image, None)
|
350 |
+
|
351 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
v0.11.0/composable_stable_diffusion.py
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
3 |
+
"""
|
4 |
+
import inspect
|
5 |
+
import warnings
|
6 |
+
from typing import List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
class ComposableStableDiffusionPipeline(DiffusionPipeline):
|
19 |
+
r"""
|
20 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
21 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
22 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
23 |
+
Args:
|
24 |
+
vae ([`AutoencoderKL`]):
|
25 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
26 |
+
text_encoder ([`CLIPTextModel`]):
|
27 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
28 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
29 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
30 |
+
tokenizer (`CLIPTokenizer`):
|
31 |
+
Tokenizer of class
|
32 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
33 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
34 |
+
scheduler ([`SchedulerMixin`]):
|
35 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
36 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
37 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
38 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
39 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
40 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
41 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
vae: AutoencoderKL,
|
47 |
+
text_encoder: CLIPTextModel,
|
48 |
+
tokenizer: CLIPTokenizer,
|
49 |
+
unet: UNet2DConditionModel,
|
50 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
51 |
+
safety_checker: StableDiffusionSafetyChecker,
|
52 |
+
feature_extractor: CLIPFeatureExtractor,
|
53 |
+
):
|
54 |
+
super().__init__()
|
55 |
+
self.register_modules(
|
56 |
+
vae=vae,
|
57 |
+
text_encoder=text_encoder,
|
58 |
+
tokenizer=tokenizer,
|
59 |
+
unet=unet,
|
60 |
+
scheduler=scheduler,
|
61 |
+
safety_checker=safety_checker,
|
62 |
+
feature_extractor=feature_extractor,
|
63 |
+
)
|
64 |
+
|
65 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
66 |
+
r"""
|
67 |
+
Enable sliced attention computation.
|
68 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
69 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
70 |
+
Args:
|
71 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
72 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
73 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
74 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
75 |
+
"""
|
76 |
+
if slice_size == "auto":
|
77 |
+
# half the attention head size is usually a good trade-off between
|
78 |
+
# speed and memory
|
79 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
80 |
+
self.unet.set_attention_slice(slice_size)
|
81 |
+
|
82 |
+
def disable_attention_slicing(self):
|
83 |
+
r"""
|
84 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
85 |
+
back to computing attention in one step.
|
86 |
+
"""
|
87 |
+
# set slice_size = `None` to disable `attention slicing`
|
88 |
+
self.enable_attention_slicing(None)
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def __call__(
|
92 |
+
self,
|
93 |
+
prompt: Union[str, List[str]],
|
94 |
+
height: Optional[int] = 512,
|
95 |
+
width: Optional[int] = 512,
|
96 |
+
num_inference_steps: Optional[int] = 50,
|
97 |
+
guidance_scale: Optional[float] = 7.5,
|
98 |
+
eta: Optional[float] = 0.0,
|
99 |
+
generator: Optional[torch.Generator] = None,
|
100 |
+
latents: Optional[torch.FloatTensor] = None,
|
101 |
+
output_type: Optional[str] = "pil",
|
102 |
+
return_dict: bool = True,
|
103 |
+
weights: Optional[str] = "",
|
104 |
+
**kwargs,
|
105 |
+
):
|
106 |
+
r"""
|
107 |
+
Function invoked when calling the pipeline for generation.
|
108 |
+
Args:
|
109 |
+
prompt (`str` or `List[str]`):
|
110 |
+
The prompt or prompts to guide the image generation.
|
111 |
+
height (`int`, *optional*, defaults to 512):
|
112 |
+
The height in pixels of the generated image.
|
113 |
+
width (`int`, *optional*, defaults to 512):
|
114 |
+
The width in pixels of the generated image.
|
115 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
116 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
117 |
+
expense of slower inference.
|
118 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
119 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
120 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
121 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
122 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
123 |
+
usually at the expense of lower image quality.
|
124 |
+
eta (`float`, *optional*, defaults to 0.0):
|
125 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
126 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
127 |
+
generator (`torch.Generator`, *optional*):
|
128 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
129 |
+
deterministic.
|
130 |
+
latents (`torch.FloatTensor`, *optional*):
|
131 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
132 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
133 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
134 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
135 |
+
The output format of the generate image. Choose between
|
136 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
137 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
138 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
139 |
+
plain tuple.
|
140 |
+
Returns:
|
141 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
142 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
143 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
144 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
145 |
+
(nsfw) content, according to the `safety_checker`.
|
146 |
+
"""
|
147 |
+
|
148 |
+
if "torch_device" in kwargs:
|
149 |
+
device = kwargs.pop("torch_device")
|
150 |
+
warnings.warn(
|
151 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
152 |
+
" Consider using `pipe.to(torch_device)` instead."
|
153 |
+
)
|
154 |
+
|
155 |
+
# Set device as before (to be removed in 0.3.0)
|
156 |
+
if device is None:
|
157 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
158 |
+
self.to(device)
|
159 |
+
|
160 |
+
if isinstance(prompt, str):
|
161 |
+
batch_size = 1
|
162 |
+
elif isinstance(prompt, list):
|
163 |
+
batch_size = len(prompt)
|
164 |
+
else:
|
165 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
166 |
+
|
167 |
+
if height % 8 != 0 or width % 8 != 0:
|
168 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
169 |
+
|
170 |
+
if "|" in prompt:
|
171 |
+
prompt = [x.strip() for x in prompt.split("|")]
|
172 |
+
print(f"composing {prompt}...")
|
173 |
+
|
174 |
+
# get prompt text embeddings
|
175 |
+
text_input = self.tokenizer(
|
176 |
+
prompt,
|
177 |
+
padding="max_length",
|
178 |
+
max_length=self.tokenizer.model_max_length,
|
179 |
+
truncation=True,
|
180 |
+
return_tensors="pt",
|
181 |
+
)
|
182 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
183 |
+
|
184 |
+
if not weights:
|
185 |
+
# specify weights for prompts (excluding the unconditional score)
|
186 |
+
print("using equal weights for all prompts...")
|
187 |
+
pos_weights = torch.tensor(
|
188 |
+
[1 / (text_embeddings.shape[0] - 1)] * (text_embeddings.shape[0] - 1), device=self.device
|
189 |
+
).reshape(-1, 1, 1, 1)
|
190 |
+
neg_weights = torch.tensor([1.0], device=self.device).reshape(-1, 1, 1, 1)
|
191 |
+
mask = torch.tensor([False] + [True] * pos_weights.shape[0], dtype=torch.bool)
|
192 |
+
else:
|
193 |
+
# set prompt weight for each
|
194 |
+
num_prompts = len(prompt) if isinstance(prompt, list) else 1
|
195 |
+
weights = [float(w.strip()) for w in weights.split("|")]
|
196 |
+
if len(weights) < num_prompts:
|
197 |
+
weights.append(1.0)
|
198 |
+
weights = torch.tensor(weights, device=self.device)
|
199 |
+
assert len(weights) == text_embeddings.shape[0], "weights specified are not equal to the number of prompts"
|
200 |
+
pos_weights = []
|
201 |
+
neg_weights = []
|
202 |
+
mask = [] # first one is unconditional score
|
203 |
+
for w in weights:
|
204 |
+
if w > 0:
|
205 |
+
pos_weights.append(w)
|
206 |
+
mask.append(True)
|
207 |
+
else:
|
208 |
+
neg_weights.append(abs(w))
|
209 |
+
mask.append(False)
|
210 |
+
# normalize the weights
|
211 |
+
pos_weights = torch.tensor(pos_weights, device=self.device).reshape(-1, 1, 1, 1)
|
212 |
+
pos_weights = pos_weights / pos_weights.sum()
|
213 |
+
neg_weights = torch.tensor(neg_weights, device=self.device).reshape(-1, 1, 1, 1)
|
214 |
+
neg_weights = neg_weights / neg_weights.sum()
|
215 |
+
mask = torch.tensor(mask, device=self.device, dtype=torch.bool)
|
216 |
+
|
217 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
218 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
219 |
+
# corresponds to doing no classifier free guidance.
|
220 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
221 |
+
# get unconditional embeddings for classifier free guidance
|
222 |
+
if do_classifier_free_guidance:
|
223 |
+
max_length = text_input.input_ids.shape[-1]
|
224 |
+
|
225 |
+
if torch.all(mask):
|
226 |
+
# no negative prompts, so we use empty string as the negative prompt
|
227 |
+
uncond_input = self.tokenizer(
|
228 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
229 |
+
)
|
230 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
231 |
+
|
232 |
+
# For classifier free guidance, we need to do two forward passes.
|
233 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
234 |
+
# to avoid doing two forward passes
|
235 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
236 |
+
|
237 |
+
# update negative weights
|
238 |
+
neg_weights = torch.tensor([1.0], device=self.device)
|
239 |
+
mask = torch.tensor([False] + mask.detach().tolist(), device=self.device, dtype=torch.bool)
|
240 |
+
|
241 |
+
# get the initial random noise unless the user supplied it
|
242 |
+
|
243 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
244 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
245 |
+
# However this currently doesn't work in `mps`.
|
246 |
+
latents_device = "cpu" if self.device.type == "mps" else self.device
|
247 |
+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
248 |
+
if latents is None:
|
249 |
+
latents = torch.randn(
|
250 |
+
latents_shape,
|
251 |
+
generator=generator,
|
252 |
+
device=latents_device,
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
if latents.shape != latents_shape:
|
256 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
257 |
+
latents = latents.to(self.device)
|
258 |
+
|
259 |
+
# set timesteps
|
260 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
261 |
+
extra_set_kwargs = {}
|
262 |
+
if accepts_offset:
|
263 |
+
extra_set_kwargs["offset"] = 1
|
264 |
+
|
265 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
266 |
+
|
267 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
268 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
269 |
+
latents = latents * self.scheduler.sigmas[0]
|
270 |
+
|
271 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
272 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
273 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
274 |
+
# and should be between [0, 1]
|
275 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
276 |
+
extra_step_kwargs = {}
|
277 |
+
if accepts_eta:
|
278 |
+
extra_step_kwargs["eta"] = eta
|
279 |
+
|
280 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
281 |
+
# expand the latents if we are doing classifier free guidance
|
282 |
+
latent_model_input = (
|
283 |
+
torch.cat([latents] * text_embeddings.shape[0]) if do_classifier_free_guidance else latents
|
284 |
+
)
|
285 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
286 |
+
sigma = self.scheduler.sigmas[i]
|
287 |
+
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
288 |
+
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
289 |
+
|
290 |
+
# reduce memory by predicting each score sequentially
|
291 |
+
noise_preds = []
|
292 |
+
# predict the noise residual
|
293 |
+
for latent_in, text_embedding_in in zip(
|
294 |
+
torch.chunk(latent_model_input, chunks=latent_model_input.shape[0], dim=0),
|
295 |
+
torch.chunk(text_embeddings, chunks=text_embeddings.shape[0], dim=0),
|
296 |
+
):
|
297 |
+
noise_preds.append(self.unet(latent_in, t, encoder_hidden_states=text_embedding_in).sample)
|
298 |
+
noise_preds = torch.cat(noise_preds, dim=0)
|
299 |
+
|
300 |
+
# perform guidance
|
301 |
+
if do_classifier_free_guidance:
|
302 |
+
noise_pred_uncond = (noise_preds[~mask] * neg_weights).sum(dim=0, keepdims=True)
|
303 |
+
noise_pred_text = (noise_preds[mask] * pos_weights).sum(dim=0, keepdims=True)
|
304 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
305 |
+
|
306 |
+
# compute the previous noisy sample x_t -> x_t-1
|
307 |
+
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
308 |
+
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
|
309 |
+
else:
|
310 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
311 |
+
|
312 |
+
# scale and decode the image latents with vae
|
313 |
+
latents = 1 / 0.18215 * latents
|
314 |
+
image = self.vae.decode(latents).sample
|
315 |
+
|
316 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
317 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
318 |
+
|
319 |
+
# run safety checker
|
320 |
+
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
321 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
322 |
+
|
323 |
+
if output_type == "pil":
|
324 |
+
image = self.numpy_to_pil(image)
|
325 |
+
|
326 |
+
if not return_dict:
|
327 |
+
return (image, has_nsfw_concept)
|
328 |
+
|
329 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/imagic_stable_diffusion.py
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modeled after the textual_inversion.py / train_dreambooth.py and the work
|
3 |
+
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
|
4 |
+
"""
|
5 |
+
import inspect
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
import PIL
|
14 |
+
from accelerate import Accelerator
|
15 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
16 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
17 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
18 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
19 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
20 |
+
from diffusers.utils import deprecate, logging
|
21 |
+
|
22 |
+
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
23 |
+
from packaging import version
|
24 |
+
from tqdm.auto import tqdm
|
25 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
26 |
+
|
27 |
+
|
28 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
29 |
+
PIL_INTERPOLATION = {
|
30 |
+
"linear": PIL.Image.Resampling.BILINEAR,
|
31 |
+
"bilinear": PIL.Image.Resampling.BILINEAR,
|
32 |
+
"bicubic": PIL.Image.Resampling.BICUBIC,
|
33 |
+
"lanczos": PIL.Image.Resampling.LANCZOS,
|
34 |
+
"nearest": PIL.Image.Resampling.NEAREST,
|
35 |
+
}
|
36 |
+
else:
|
37 |
+
PIL_INTERPOLATION = {
|
38 |
+
"linear": PIL.Image.LINEAR,
|
39 |
+
"bilinear": PIL.Image.BILINEAR,
|
40 |
+
"bicubic": PIL.Image.BICUBIC,
|
41 |
+
"lanczos": PIL.Image.LANCZOS,
|
42 |
+
"nearest": PIL.Image.NEAREST,
|
43 |
+
}
|
44 |
+
# ------------------------------------------------------------------------------
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
def preprocess(image):
|
50 |
+
w, h = image.size
|
51 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
52 |
+
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
53 |
+
image = np.array(image).astype(np.float32) / 255.0
|
54 |
+
image = image[None].transpose(0, 3, 1, 2)
|
55 |
+
image = torch.from_numpy(image)
|
56 |
+
return 2.0 * image - 1.0
|
57 |
+
|
58 |
+
|
59 |
+
class ImagicStableDiffusionPipeline(DiffusionPipeline):
|
60 |
+
r"""
|
61 |
+
Pipeline for imagic image editing.
|
62 |
+
See paper here: https://arxiv.org/pdf/2210.09276.pdf
|
63 |
+
|
64 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
65 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
66 |
+
Args:
|
67 |
+
vae ([`AutoencoderKL`]):
|
68 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
69 |
+
text_encoder ([`CLIPTextModel`]):
|
70 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
71 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
72 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
73 |
+
tokenizer (`CLIPTokenizer`):
|
74 |
+
Tokenizer of class
|
75 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
76 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
77 |
+
scheduler ([`SchedulerMixin`]):
|
78 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
79 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
80 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
81 |
+
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
82 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
83 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
84 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
vae: AutoencoderKL,
|
90 |
+
text_encoder: CLIPTextModel,
|
91 |
+
tokenizer: CLIPTokenizer,
|
92 |
+
unet: UNet2DConditionModel,
|
93 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
94 |
+
safety_checker: StableDiffusionSafetyChecker,
|
95 |
+
feature_extractor: CLIPFeatureExtractor,
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.register_modules(
|
99 |
+
vae=vae,
|
100 |
+
text_encoder=text_encoder,
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
unet=unet,
|
103 |
+
scheduler=scheduler,
|
104 |
+
safety_checker=safety_checker,
|
105 |
+
feature_extractor=feature_extractor,
|
106 |
+
)
|
107 |
+
|
108 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
109 |
+
r"""
|
110 |
+
Enable sliced attention computation.
|
111 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
112 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
113 |
+
Args:
|
114 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
115 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
116 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
117 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
118 |
+
"""
|
119 |
+
if slice_size == "auto":
|
120 |
+
# half the attention head size is usually a good trade-off between
|
121 |
+
# speed and memory
|
122 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
123 |
+
self.unet.set_attention_slice(slice_size)
|
124 |
+
|
125 |
+
def disable_attention_slicing(self):
|
126 |
+
r"""
|
127 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
128 |
+
back to computing attention in one step.
|
129 |
+
"""
|
130 |
+
# set slice_size = `None` to disable `attention slicing`
|
131 |
+
self.enable_attention_slicing(None)
|
132 |
+
|
133 |
+
def train(
|
134 |
+
self,
|
135 |
+
prompt: Union[str, List[str]],
|
136 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
137 |
+
height: Optional[int] = 512,
|
138 |
+
width: Optional[int] = 512,
|
139 |
+
generator: Optional[torch.Generator] = None,
|
140 |
+
embedding_learning_rate: float = 0.001,
|
141 |
+
diffusion_model_learning_rate: float = 2e-6,
|
142 |
+
text_embedding_optimization_steps: int = 500,
|
143 |
+
model_fine_tuning_optimization_steps: int = 1000,
|
144 |
+
**kwargs,
|
145 |
+
):
|
146 |
+
r"""
|
147 |
+
Function invoked when calling the pipeline for generation.
|
148 |
+
Args:
|
149 |
+
prompt (`str` or `List[str]`):
|
150 |
+
The prompt or prompts to guide the image generation.
|
151 |
+
height (`int`, *optional*, defaults to 512):
|
152 |
+
The height in pixels of the generated image.
|
153 |
+
width (`int`, *optional*, defaults to 512):
|
154 |
+
The width in pixels of the generated image.
|
155 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
156 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
157 |
+
expense of slower inference.
|
158 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
159 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
160 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
161 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
162 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
163 |
+
usually at the expense of lower image quality.
|
164 |
+
eta (`float`, *optional*, defaults to 0.0):
|
165 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
166 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
167 |
+
generator (`torch.Generator`, *optional*):
|
168 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
169 |
+
deterministic.
|
170 |
+
latents (`torch.FloatTensor`, *optional*):
|
171 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
172 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
173 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
174 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
175 |
+
The output format of the generate image. Choose between
|
176 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
177 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
178 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
179 |
+
plain tuple.
|
180 |
+
Returns:
|
181 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
182 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
183 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
184 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
185 |
+
(nsfw) content, according to the `safety_checker`.
|
186 |
+
"""
|
187 |
+
message = "Please use `image` instead of `init_image`."
|
188 |
+
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
189 |
+
image = init_image or image
|
190 |
+
|
191 |
+
accelerator = Accelerator(
|
192 |
+
gradient_accumulation_steps=1,
|
193 |
+
mixed_precision="fp16",
|
194 |
+
)
|
195 |
+
|
196 |
+
if "torch_device" in kwargs:
|
197 |
+
device = kwargs.pop("torch_device")
|
198 |
+
warnings.warn(
|
199 |
+
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
200 |
+
" Consider using `pipe.to(torch_device)` instead."
|
201 |
+
)
|
202 |
+
|
203 |
+
if device is None:
|
204 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
205 |
+
self.to(device)
|
206 |
+
|
207 |
+
if height % 8 != 0 or width % 8 != 0:
|
208 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
209 |
+
|
210 |
+
# Freeze vae and unet
|
211 |
+
self.vae.requires_grad_(False)
|
212 |
+
self.unet.requires_grad_(False)
|
213 |
+
self.text_encoder.requires_grad_(False)
|
214 |
+
self.unet.eval()
|
215 |
+
self.vae.eval()
|
216 |
+
self.text_encoder.eval()
|
217 |
+
|
218 |
+
if accelerator.is_main_process:
|
219 |
+
accelerator.init_trackers(
|
220 |
+
"imagic",
|
221 |
+
config={
|
222 |
+
"embedding_learning_rate": embedding_learning_rate,
|
223 |
+
"text_embedding_optimization_steps": text_embedding_optimization_steps,
|
224 |
+
},
|
225 |
+
)
|
226 |
+
|
227 |
+
# get text embeddings for prompt
|
228 |
+
text_input = self.tokenizer(
|
229 |
+
prompt,
|
230 |
+
padding="max_length",
|
231 |
+
max_length=self.tokenizer.model_max_length,
|
232 |
+
truncaton=True,
|
233 |
+
return_tensors="pt",
|
234 |
+
)
|
235 |
+
text_embeddings = torch.nn.Parameter(
|
236 |
+
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True
|
237 |
+
)
|
238 |
+
text_embeddings = text_embeddings.detach()
|
239 |
+
text_embeddings.requires_grad_()
|
240 |
+
text_embeddings_orig = text_embeddings.clone()
|
241 |
+
|
242 |
+
# Initialize the optimizer
|
243 |
+
optimizer = torch.optim.Adam(
|
244 |
+
[text_embeddings], # only optimize the embeddings
|
245 |
+
lr=embedding_learning_rate,
|
246 |
+
)
|
247 |
+
|
248 |
+
if isinstance(image, PIL.Image.Image):
|
249 |
+
image = preprocess(image)
|
250 |
+
|
251 |
+
latents_dtype = text_embeddings.dtype
|
252 |
+
image = image.to(device=self.device, dtype=latents_dtype)
|
253 |
+
init_latent_image_dist = self.vae.encode(image).latent_dist
|
254 |
+
image_latents = init_latent_image_dist.sample(generator=generator)
|
255 |
+
image_latents = 0.18215 * image_latents
|
256 |
+
|
257 |
+
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process)
|
258 |
+
progress_bar.set_description("Steps")
|
259 |
+
|
260 |
+
global_step = 0
|
261 |
+
|
262 |
+
logger.info("First optimizing the text embedding to better reconstruct the init image")
|
263 |
+
for _ in range(text_embedding_optimization_steps):
|
264 |
+
with accelerator.accumulate(text_embeddings):
|
265 |
+
# Sample noise that we'll add to the latents
|
266 |
+
noise = torch.randn(image_latents.shape).to(image_latents.device)
|
267 |
+
timesteps = torch.randint(1000, (1,), device=image_latents.device)
|
268 |
+
|
269 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
270 |
+
# (this is the forward diffusion process)
|
271 |
+
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
|
272 |
+
|
273 |
+
# Predict the noise residual
|
274 |
+
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
275 |
+
|
276 |
+
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
277 |
+
accelerator.backward(loss)
|
278 |
+
|
279 |
+
optimizer.step()
|
280 |
+
optimizer.zero_grad()
|
281 |
+
|
282 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
283 |
+
if accelerator.sync_gradients:
|
284 |
+
progress_bar.update(1)
|
285 |
+
global_step += 1
|
286 |
+
|
287 |
+
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
288 |
+
progress_bar.set_postfix(**logs)
|
289 |
+
accelerator.log(logs, step=global_step)
|
290 |
+
|
291 |
+
accelerator.wait_for_everyone()
|
292 |
+
|
293 |
+
text_embeddings.requires_grad_(False)
|
294 |
+
|
295 |
+
# Now we fine tune the unet to better reconstruct the image
|
296 |
+
self.unet.requires_grad_(True)
|
297 |
+
self.unet.train()
|
298 |
+
optimizer = torch.optim.Adam(
|
299 |
+
self.unet.parameters(), # only optimize unet
|
300 |
+
lr=diffusion_model_learning_rate,
|
301 |
+
)
|
302 |
+
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process)
|
303 |
+
|
304 |
+
logger.info("Next fine tuning the entire model to better reconstruct the init image")
|
305 |
+
for _ in range(model_fine_tuning_optimization_steps):
|
306 |
+
with accelerator.accumulate(self.unet.parameters()):
|
307 |
+
# Sample noise that we'll add to the latents
|
308 |
+
noise = torch.randn(image_latents.shape).to(image_latents.device)
|
309 |
+
timesteps = torch.randint(1000, (1,), device=image_latents.device)
|
310 |
+
|
311 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
312 |
+
# (this is the forward diffusion process)
|
313 |
+
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
|
314 |
+
|
315 |
+
# Predict the noise residual
|
316 |
+
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
317 |
+
|
318 |
+
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
319 |
+
accelerator.backward(loss)
|
320 |
+
|
321 |
+
optimizer.step()
|
322 |
+
optimizer.zero_grad()
|
323 |
+
|
324 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
325 |
+
if accelerator.sync_gradients:
|
326 |
+
progress_bar.update(1)
|
327 |
+
global_step += 1
|
328 |
+
|
329 |
+
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
330 |
+
progress_bar.set_postfix(**logs)
|
331 |
+
accelerator.log(logs, step=global_step)
|
332 |
+
|
333 |
+
accelerator.wait_for_everyone()
|
334 |
+
self.text_embeddings_orig = text_embeddings_orig
|
335 |
+
self.text_embeddings = text_embeddings
|
336 |
+
|
337 |
+
@torch.no_grad()
|
338 |
+
def __call__(
|
339 |
+
self,
|
340 |
+
alpha: float = 1.2,
|
341 |
+
height: Optional[int] = 512,
|
342 |
+
width: Optional[int] = 512,
|
343 |
+
num_inference_steps: Optional[int] = 50,
|
344 |
+
generator: Optional[torch.Generator] = None,
|
345 |
+
output_type: Optional[str] = "pil",
|
346 |
+
return_dict: bool = True,
|
347 |
+
guidance_scale: float = 7.5,
|
348 |
+
eta: float = 0.0,
|
349 |
+
**kwargs,
|
350 |
+
):
|
351 |
+
r"""
|
352 |
+
Function invoked when calling the pipeline for generation.
|
353 |
+
Args:
|
354 |
+
prompt (`str` or `List[str]`):
|
355 |
+
The prompt or prompts to guide the image generation.
|
356 |
+
height (`int`, *optional*, defaults to 512):
|
357 |
+
The height in pixels of the generated image.
|
358 |
+
width (`int`, *optional*, defaults to 512):
|
359 |
+
The width in pixels of the generated image.
|
360 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
361 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
362 |
+
expense of slower inference.
|
363 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
364 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
365 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
366 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
367 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
368 |
+
usually at the expense of lower image quality.
|
369 |
+
eta (`float`, *optional*, defaults to 0.0):
|
370 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
371 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
372 |
+
generator (`torch.Generator`, *optional*):
|
373 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
374 |
+
deterministic.
|
375 |
+
latents (`torch.FloatTensor`, *optional*):
|
376 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
377 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
378 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
379 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
380 |
+
The output format of the generate image. Choose between
|
381 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
382 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
383 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
384 |
+
plain tuple.
|
385 |
+
Returns:
|
386 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
387 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
388 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
389 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
390 |
+
(nsfw) content, according to the `safety_checker`.
|
391 |
+
"""
|
392 |
+
if height % 8 != 0 or width % 8 != 0:
|
393 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
394 |
+
if self.text_embeddings is None:
|
395 |
+
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
396 |
+
if self.text_embeddings_orig is None:
|
397 |
+
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
398 |
+
|
399 |
+
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
|
400 |
+
|
401 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
402 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
403 |
+
# corresponds to doing no classifier free guidance.
|
404 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
405 |
+
# get unconditional embeddings for classifier free guidance
|
406 |
+
if do_classifier_free_guidance:
|
407 |
+
uncond_tokens = [""]
|
408 |
+
max_length = self.tokenizer.model_max_length
|
409 |
+
uncond_input = self.tokenizer(
|
410 |
+
uncond_tokens,
|
411 |
+
padding="max_length",
|
412 |
+
max_length=max_length,
|
413 |
+
truncation=True,
|
414 |
+
return_tensors="pt",
|
415 |
+
)
|
416 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
417 |
+
|
418 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
419 |
+
seq_len = uncond_embeddings.shape[1]
|
420 |
+
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1)
|
421 |
+
|
422 |
+
# For classifier free guidance, we need to do two forward passes.
|
423 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
424 |
+
# to avoid doing two forward passes
|
425 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
426 |
+
|
427 |
+
# get the initial random noise unless the user supplied it
|
428 |
+
|
429 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
430 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
431 |
+
# However this currently doesn't work in `mps`.
|
432 |
+
latents_shape = (1, self.unet.in_channels, height // 8, width // 8)
|
433 |
+
latents_dtype = text_embeddings.dtype
|
434 |
+
if self.device.type == "mps":
|
435 |
+
# randn does not exist on mps
|
436 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
437 |
+
self.device
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
441 |
+
|
442 |
+
# set timesteps
|
443 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
444 |
+
|
445 |
+
# Some schedulers like PNDM have timesteps as arrays
|
446 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
447 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
448 |
+
|
449 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
450 |
+
latents = latents * self.scheduler.init_noise_sigma
|
451 |
+
|
452 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
453 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
454 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
455 |
+
# and should be between [0, 1]
|
456 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
457 |
+
extra_step_kwargs = {}
|
458 |
+
if accepts_eta:
|
459 |
+
extra_step_kwargs["eta"] = eta
|
460 |
+
|
461 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
462 |
+
# expand the latents if we are doing classifier free guidance
|
463 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
464 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
465 |
+
|
466 |
+
# predict the noise residual
|
467 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
468 |
+
|
469 |
+
# perform guidance
|
470 |
+
if do_classifier_free_guidance:
|
471 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
472 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
473 |
+
|
474 |
+
# compute the previous noisy sample x_t -> x_t-1
|
475 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
476 |
+
|
477 |
+
latents = 1 / 0.18215 * latents
|
478 |
+
image = self.vae.decode(latents).sample
|
479 |
+
|
480 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
481 |
+
|
482 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
483 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
484 |
+
|
485 |
+
if self.safety_checker is not None:
|
486 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
487 |
+
self.device
|
488 |
+
)
|
489 |
+
image, has_nsfw_concept = self.safety_checker(
|
490 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
491 |
+
)
|
492 |
+
else:
|
493 |
+
has_nsfw_concept = None
|
494 |
+
|
495 |
+
if output_type == "pil":
|
496 |
+
image = self.numpy_to_pil(image)
|
497 |
+
|
498 |
+
if not return_dict:
|
499 |
+
return (image, has_nsfw_concept)
|
500 |
+
|
501 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/img2img_inpainting.py
ADDED
@@ -0,0 +1,463 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Callable, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import PIL
|
8 |
+
from diffusers.configuration_utils import FrozenDict
|
9 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
10 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
14 |
+
from diffusers.utils import deprecate, logging
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
19 |
+
|
20 |
+
|
21 |
+
def prepare_mask_and_masked_image(image, mask):
|
22 |
+
image = np.array(image.convert("RGB"))
|
23 |
+
image = image[None].transpose(0, 3, 1, 2)
|
24 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
25 |
+
|
26 |
+
mask = np.array(mask.convert("L"))
|
27 |
+
mask = mask.astype(np.float32) / 255.0
|
28 |
+
mask = mask[None, None]
|
29 |
+
mask[mask < 0.5] = 0
|
30 |
+
mask[mask >= 0.5] = 1
|
31 |
+
mask = torch.from_numpy(mask)
|
32 |
+
|
33 |
+
masked_image = image * (mask < 0.5)
|
34 |
+
|
35 |
+
return mask, masked_image
|
36 |
+
|
37 |
+
|
38 |
+
def check_size(image, height, width):
|
39 |
+
if isinstance(image, PIL.Image.Image):
|
40 |
+
w, h = image.size
|
41 |
+
elif isinstance(image, torch.Tensor):
|
42 |
+
*_, h, w = image.shape
|
43 |
+
|
44 |
+
if h != height or w != width:
|
45 |
+
raise ValueError(f"Image size should be {height}x{width}, but got {h}x{w}")
|
46 |
+
|
47 |
+
|
48 |
+
def overlay_inner_image(image, inner_image, paste_offset: Tuple[int] = (0, 0)):
|
49 |
+
inner_image = inner_image.convert("RGBA")
|
50 |
+
image = image.convert("RGB")
|
51 |
+
|
52 |
+
image.paste(inner_image, paste_offset, inner_image)
|
53 |
+
image = image.convert("RGB")
|
54 |
+
|
55 |
+
return image
|
56 |
+
|
57 |
+
|
58 |
+
class ImageToImageInpaintingPipeline(DiffusionPipeline):
|
59 |
+
r"""
|
60 |
+
Pipeline for text-guided image-to-image inpainting using Stable Diffusion. *This is an experimental feature*.
|
61 |
+
|
62 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
63 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
64 |
+
|
65 |
+
Args:
|
66 |
+
vae ([`AutoencoderKL`]):
|
67 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
68 |
+
text_encoder ([`CLIPTextModel`]):
|
69 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
70 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
71 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
72 |
+
tokenizer (`CLIPTokenizer`):
|
73 |
+
Tokenizer of class
|
74 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
75 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
76 |
+
scheduler ([`SchedulerMixin`]):
|
77 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
78 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
79 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
80 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
81 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
82 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
83 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
vae: AutoencoderKL,
|
89 |
+
text_encoder: CLIPTextModel,
|
90 |
+
tokenizer: CLIPTokenizer,
|
91 |
+
unet: UNet2DConditionModel,
|
92 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
93 |
+
safety_checker: StableDiffusionSafetyChecker,
|
94 |
+
feature_extractor: CLIPFeatureExtractor,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
99 |
+
deprecation_message = (
|
100 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
101 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
102 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
103 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
104 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
105 |
+
" file"
|
106 |
+
)
|
107 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
108 |
+
new_config = dict(scheduler.config)
|
109 |
+
new_config["steps_offset"] = 1
|
110 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
111 |
+
|
112 |
+
if safety_checker is None:
|
113 |
+
logger.warning(
|
114 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
115 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
116 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
117 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
118 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
119 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
120 |
+
)
|
121 |
+
|
122 |
+
self.register_modules(
|
123 |
+
vae=vae,
|
124 |
+
text_encoder=text_encoder,
|
125 |
+
tokenizer=tokenizer,
|
126 |
+
unet=unet,
|
127 |
+
scheduler=scheduler,
|
128 |
+
safety_checker=safety_checker,
|
129 |
+
feature_extractor=feature_extractor,
|
130 |
+
)
|
131 |
+
|
132 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
133 |
+
r"""
|
134 |
+
Enable sliced attention computation.
|
135 |
+
|
136 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
137 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
141 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
142 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
143 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
144 |
+
"""
|
145 |
+
if slice_size == "auto":
|
146 |
+
# half the attention head size is usually a good trade-off between
|
147 |
+
# speed and memory
|
148 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
149 |
+
self.unet.set_attention_slice(slice_size)
|
150 |
+
|
151 |
+
def disable_attention_slicing(self):
|
152 |
+
r"""
|
153 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
154 |
+
back to computing attention in one step.
|
155 |
+
"""
|
156 |
+
# set slice_size = `None` to disable `attention slicing`
|
157 |
+
self.enable_attention_slicing(None)
|
158 |
+
|
159 |
+
@torch.no_grad()
|
160 |
+
def __call__(
|
161 |
+
self,
|
162 |
+
prompt: Union[str, List[str]],
|
163 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
164 |
+
inner_image: Union[torch.FloatTensor, PIL.Image.Image],
|
165 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
166 |
+
height: int = 512,
|
167 |
+
width: int = 512,
|
168 |
+
num_inference_steps: int = 50,
|
169 |
+
guidance_scale: float = 7.5,
|
170 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
171 |
+
num_images_per_prompt: Optional[int] = 1,
|
172 |
+
eta: float = 0.0,
|
173 |
+
generator: Optional[torch.Generator] = None,
|
174 |
+
latents: Optional[torch.FloatTensor] = None,
|
175 |
+
output_type: Optional[str] = "pil",
|
176 |
+
return_dict: bool = True,
|
177 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
178 |
+
callback_steps: Optional[int] = 1,
|
179 |
+
**kwargs,
|
180 |
+
):
|
181 |
+
r"""
|
182 |
+
Function invoked when calling the pipeline for generation.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
prompt (`str` or `List[str]`):
|
186 |
+
The prompt or prompts to guide the image generation.
|
187 |
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
188 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
189 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
190 |
+
inner_image (`torch.Tensor` or `PIL.Image.Image`):
|
191 |
+
`Image`, or tensor representing an image batch which will be overlayed onto `image`. Non-transparent
|
192 |
+
regions of `inner_image` must fit inside white pixels in `mask_image`. Expects four channels, with
|
193 |
+
the last channel representing the alpha channel, which will be used to blend `inner_image` with
|
194 |
+
`image`. If not provided, it will be forcibly cast to RGBA.
|
195 |
+
mask_image (`PIL.Image.Image`):
|
196 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
197 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
198 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
199 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
200 |
+
height (`int`, *optional*, defaults to 512):
|
201 |
+
The height in pixels of the generated image.
|
202 |
+
width (`int`, *optional*, defaults to 512):
|
203 |
+
The width in pixels of the generated image.
|
204 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
205 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
206 |
+
expense of slower inference.
|
207 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
208 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
209 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
210 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
211 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
212 |
+
usually at the expense of lower image quality.
|
213 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
214 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
215 |
+
if `guidance_scale` is less than `1`).
|
216 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
217 |
+
The number of images to generate per prompt.
|
218 |
+
eta (`float`, *optional*, defaults to 0.0):
|
219 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
220 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
221 |
+
generator (`torch.Generator`, *optional*):
|
222 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
223 |
+
deterministic.
|
224 |
+
latents (`torch.FloatTensor`, *optional*):
|
225 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
226 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
227 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
228 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
229 |
+
The output format of the generate image. Choose between
|
230 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
231 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
232 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
233 |
+
plain tuple.
|
234 |
+
callback (`Callable`, *optional*):
|
235 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
236 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
237 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
238 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
239 |
+
called at every step.
|
240 |
+
|
241 |
+
Returns:
|
242 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
243 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
244 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
245 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
246 |
+
(nsfw) content, according to the `safety_checker`.
|
247 |
+
"""
|
248 |
+
|
249 |
+
if isinstance(prompt, str):
|
250 |
+
batch_size = 1
|
251 |
+
elif isinstance(prompt, list):
|
252 |
+
batch_size = len(prompt)
|
253 |
+
else:
|
254 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
255 |
+
|
256 |
+
if height % 8 != 0 or width % 8 != 0:
|
257 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
258 |
+
|
259 |
+
if (callback_steps is None) or (
|
260 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
261 |
+
):
|
262 |
+
raise ValueError(
|
263 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
264 |
+
f" {type(callback_steps)}."
|
265 |
+
)
|
266 |
+
|
267 |
+
# check if input sizes are correct
|
268 |
+
check_size(image, height, width)
|
269 |
+
check_size(inner_image, height, width)
|
270 |
+
check_size(mask_image, height, width)
|
271 |
+
|
272 |
+
# get prompt text embeddings
|
273 |
+
text_inputs = self.tokenizer(
|
274 |
+
prompt,
|
275 |
+
padding="max_length",
|
276 |
+
max_length=self.tokenizer.model_max_length,
|
277 |
+
return_tensors="pt",
|
278 |
+
)
|
279 |
+
text_input_ids = text_inputs.input_ids
|
280 |
+
|
281 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
282 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
283 |
+
logger.warning(
|
284 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
285 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
286 |
+
)
|
287 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
288 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
289 |
+
|
290 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
291 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
292 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
293 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
294 |
+
|
295 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
296 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
297 |
+
# corresponds to doing no classifier free guidance.
|
298 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
299 |
+
# get unconditional embeddings for classifier free guidance
|
300 |
+
if do_classifier_free_guidance:
|
301 |
+
uncond_tokens: List[str]
|
302 |
+
if negative_prompt is None:
|
303 |
+
uncond_tokens = [""]
|
304 |
+
elif type(prompt) is not type(negative_prompt):
|
305 |
+
raise TypeError(
|
306 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
307 |
+
f" {type(prompt)}."
|
308 |
+
)
|
309 |
+
elif isinstance(negative_prompt, str):
|
310 |
+
uncond_tokens = [negative_prompt]
|
311 |
+
elif batch_size != len(negative_prompt):
|
312 |
+
raise ValueError(
|
313 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
314 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
315 |
+
" the batch size of `prompt`."
|
316 |
+
)
|
317 |
+
else:
|
318 |
+
uncond_tokens = negative_prompt
|
319 |
+
|
320 |
+
max_length = text_input_ids.shape[-1]
|
321 |
+
uncond_input = self.tokenizer(
|
322 |
+
uncond_tokens,
|
323 |
+
padding="max_length",
|
324 |
+
max_length=max_length,
|
325 |
+
truncation=True,
|
326 |
+
return_tensors="pt",
|
327 |
+
)
|
328 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
329 |
+
|
330 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
331 |
+
seq_len = uncond_embeddings.shape[1]
|
332 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
333 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
334 |
+
|
335 |
+
# For classifier free guidance, we need to do two forward passes.
|
336 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
337 |
+
# to avoid doing two forward passes
|
338 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
339 |
+
|
340 |
+
# get the initial random noise unless the user supplied it
|
341 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
342 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
343 |
+
# However this currently doesn't work in `mps`.
|
344 |
+
num_channels_latents = self.vae.config.latent_channels
|
345 |
+
latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8)
|
346 |
+
latents_dtype = text_embeddings.dtype
|
347 |
+
if latents is None:
|
348 |
+
if self.device.type == "mps":
|
349 |
+
# randn does not exist on mps
|
350 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
351 |
+
self.device
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
355 |
+
else:
|
356 |
+
if latents.shape != latents_shape:
|
357 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
358 |
+
latents = latents.to(self.device)
|
359 |
+
|
360 |
+
# overlay the inner image
|
361 |
+
image = overlay_inner_image(image, inner_image)
|
362 |
+
|
363 |
+
# prepare mask and masked_image
|
364 |
+
mask, masked_image = prepare_mask_and_masked_image(image, mask_image)
|
365 |
+
mask = mask.to(device=self.device, dtype=text_embeddings.dtype)
|
366 |
+
masked_image = masked_image.to(device=self.device, dtype=text_embeddings.dtype)
|
367 |
+
|
368 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
369 |
+
mask = torch.nn.functional.interpolate(mask, size=(height // 8, width // 8))
|
370 |
+
|
371 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
372 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
373 |
+
masked_image_latents = 0.18215 * masked_image_latents
|
374 |
+
|
375 |
+
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
|
376 |
+
mask = mask.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
|
377 |
+
masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 1, 1, 1)
|
378 |
+
|
379 |
+
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
|
380 |
+
masked_image_latents = (
|
381 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
382 |
+
)
|
383 |
+
|
384 |
+
num_channels_mask = mask.shape[1]
|
385 |
+
num_channels_masked_image = masked_image_latents.shape[1]
|
386 |
+
|
387 |
+
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
|
388 |
+
raise ValueError(
|
389 |
+
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
|
390 |
+
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
391 |
+
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
|
392 |
+
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
|
393 |
+
" `pipeline.unet` or your `mask_image` or `image` input."
|
394 |
+
)
|
395 |
+
|
396 |
+
# set timesteps
|
397 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
398 |
+
|
399 |
+
# Some schedulers like PNDM have timesteps as arrays
|
400 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
401 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
402 |
+
|
403 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
404 |
+
latents = latents * self.scheduler.init_noise_sigma
|
405 |
+
|
406 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
407 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
408 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
409 |
+
# and should be between [0, 1]
|
410 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
411 |
+
extra_step_kwargs = {}
|
412 |
+
if accepts_eta:
|
413 |
+
extra_step_kwargs["eta"] = eta
|
414 |
+
|
415 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
416 |
+
# expand the latents if we are doing classifier free guidance
|
417 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
418 |
+
|
419 |
+
# concat latents, mask, masked_image_latents in the channel dimension
|
420 |
+
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
|
421 |
+
|
422 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
423 |
+
|
424 |
+
# predict the noise residual
|
425 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
426 |
+
|
427 |
+
# perform guidance
|
428 |
+
if do_classifier_free_guidance:
|
429 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
430 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
431 |
+
|
432 |
+
# compute the previous noisy sample x_t -> x_t-1
|
433 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
434 |
+
|
435 |
+
# call the callback, if provided
|
436 |
+
if callback is not None and i % callback_steps == 0:
|
437 |
+
callback(i, t, latents)
|
438 |
+
|
439 |
+
latents = 1 / 0.18215 * latents
|
440 |
+
image = self.vae.decode(latents).sample
|
441 |
+
|
442 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
443 |
+
|
444 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
445 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
446 |
+
|
447 |
+
if self.safety_checker is not None:
|
448 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
449 |
+
self.device
|
450 |
+
)
|
451 |
+
image, has_nsfw_concept = self.safety_checker(
|
452 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
453 |
+
)
|
454 |
+
else:
|
455 |
+
has_nsfw_concept = None
|
456 |
+
|
457 |
+
if output_type == "pil":
|
458 |
+
image = self.numpy_to_pil(image)
|
459 |
+
|
460 |
+
if not return_dict:
|
461 |
+
return (image, has_nsfw_concept)
|
462 |
+
|
463 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/interpolate_stable_diffusion.py
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
11 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
15 |
+
from diffusers.utils import deprecate, logging
|
16 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
|
22 |
+
def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
|
23 |
+
"""helper function to spherically interpolate two arrays v1 v2"""
|
24 |
+
|
25 |
+
if not isinstance(v0, np.ndarray):
|
26 |
+
inputs_are_torch = True
|
27 |
+
input_device = v0.device
|
28 |
+
v0 = v0.cpu().numpy()
|
29 |
+
v1 = v1.cpu().numpy()
|
30 |
+
|
31 |
+
dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
|
32 |
+
if np.abs(dot) > DOT_THRESHOLD:
|
33 |
+
v2 = (1 - t) * v0 + t * v1
|
34 |
+
else:
|
35 |
+
theta_0 = np.arccos(dot)
|
36 |
+
sin_theta_0 = np.sin(theta_0)
|
37 |
+
theta_t = theta_0 * t
|
38 |
+
sin_theta_t = np.sin(theta_t)
|
39 |
+
s0 = np.sin(theta_0 - theta_t) / sin_theta_0
|
40 |
+
s1 = sin_theta_t / sin_theta_0
|
41 |
+
v2 = s0 * v0 + s1 * v1
|
42 |
+
|
43 |
+
if inputs_are_torch:
|
44 |
+
v2 = torch.from_numpy(v2).to(input_device)
|
45 |
+
|
46 |
+
return v2
|
47 |
+
|
48 |
+
|
49 |
+
class StableDiffusionWalkPipeline(DiffusionPipeline):
|
50 |
+
r"""
|
51 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
52 |
+
|
53 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
54 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
55 |
+
|
56 |
+
Args:
|
57 |
+
vae ([`AutoencoderKL`]):
|
58 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
59 |
+
text_encoder ([`CLIPTextModel`]):
|
60 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
61 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
62 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
63 |
+
tokenizer (`CLIPTokenizer`):
|
64 |
+
Tokenizer of class
|
65 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
66 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
67 |
+
scheduler ([`SchedulerMixin`]):
|
68 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
69 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
70 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
71 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
72 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
73 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
74 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vae: AutoencoderKL,
|
80 |
+
text_encoder: CLIPTextModel,
|
81 |
+
tokenizer: CLIPTokenizer,
|
82 |
+
unet: UNet2DConditionModel,
|
83 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
84 |
+
safety_checker: StableDiffusionSafetyChecker,
|
85 |
+
feature_extractor: CLIPFeatureExtractor,
|
86 |
+
):
|
87 |
+
super().__init__()
|
88 |
+
|
89 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
90 |
+
deprecation_message = (
|
91 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
92 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
93 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
94 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
95 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
96 |
+
" file"
|
97 |
+
)
|
98 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
99 |
+
new_config = dict(scheduler.config)
|
100 |
+
new_config["steps_offset"] = 1
|
101 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
102 |
+
|
103 |
+
if safety_checker is None:
|
104 |
+
logger.warning(
|
105 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
106 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
107 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
108 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
109 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
110 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
111 |
+
)
|
112 |
+
|
113 |
+
self.register_modules(
|
114 |
+
vae=vae,
|
115 |
+
text_encoder=text_encoder,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
unet=unet,
|
118 |
+
scheduler=scheduler,
|
119 |
+
safety_checker=safety_checker,
|
120 |
+
feature_extractor=feature_extractor,
|
121 |
+
)
|
122 |
+
|
123 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
124 |
+
r"""
|
125 |
+
Enable sliced attention computation.
|
126 |
+
|
127 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
128 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
132 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
133 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
134 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
135 |
+
"""
|
136 |
+
if slice_size == "auto":
|
137 |
+
# half the attention head size is usually a good trade-off between
|
138 |
+
# speed and memory
|
139 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
140 |
+
self.unet.set_attention_slice(slice_size)
|
141 |
+
|
142 |
+
def disable_attention_slicing(self):
|
143 |
+
r"""
|
144 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
145 |
+
back to computing attention in one step.
|
146 |
+
"""
|
147 |
+
# set slice_size = `None` to disable `attention slicing`
|
148 |
+
self.enable_attention_slicing(None)
|
149 |
+
|
150 |
+
@torch.no_grad()
|
151 |
+
def __call__(
|
152 |
+
self,
|
153 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
154 |
+
height: int = 512,
|
155 |
+
width: int = 512,
|
156 |
+
num_inference_steps: int = 50,
|
157 |
+
guidance_scale: float = 7.5,
|
158 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
159 |
+
num_images_per_prompt: Optional[int] = 1,
|
160 |
+
eta: float = 0.0,
|
161 |
+
generator: Optional[torch.Generator] = None,
|
162 |
+
latents: Optional[torch.FloatTensor] = None,
|
163 |
+
output_type: Optional[str] = "pil",
|
164 |
+
return_dict: bool = True,
|
165 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
166 |
+
callback_steps: Optional[int] = 1,
|
167 |
+
text_embeddings: Optional[torch.FloatTensor] = None,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
r"""
|
171 |
+
Function invoked when calling the pipeline for generation.
|
172 |
+
|
173 |
+
Args:
|
174 |
+
prompt (`str` or `List[str]`, *optional*, defaults to `None`):
|
175 |
+
The prompt or prompts to guide the image generation. If not provided, `text_embeddings` is required.
|
176 |
+
height (`int`, *optional*, defaults to 512):
|
177 |
+
The height in pixels of the generated image.
|
178 |
+
width (`int`, *optional*, defaults to 512):
|
179 |
+
The width in pixels of the generated image.
|
180 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
181 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
182 |
+
expense of slower inference.
|
183 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
184 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
185 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
186 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
187 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
188 |
+
usually at the expense of lower image quality.
|
189 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
190 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
191 |
+
if `guidance_scale` is less than `1`).
|
192 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
193 |
+
The number of images to generate per prompt.
|
194 |
+
eta (`float`, *optional*, defaults to 0.0):
|
195 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
196 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
197 |
+
generator (`torch.Generator`, *optional*):
|
198 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
199 |
+
deterministic.
|
200 |
+
latents (`torch.FloatTensor`, *optional*):
|
201 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
202 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
203 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
204 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
205 |
+
The output format of the generate image. Choose between
|
206 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
207 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
208 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
209 |
+
plain tuple.
|
210 |
+
callback (`Callable`, *optional*):
|
211 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
212 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
213 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
214 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
215 |
+
called at every step.
|
216 |
+
text_embeddings (`torch.FloatTensor`, *optional*, defaults to `None`):
|
217 |
+
Pre-generated text embeddings to be used as inputs for image generation. Can be used in place of
|
218 |
+
`prompt` to avoid re-computing the embeddings. If not provided, the embeddings will be generated from
|
219 |
+
the supplied `prompt`.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
223 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
224 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
225 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
226 |
+
(nsfw) content, according to the `safety_checker`.
|
227 |
+
"""
|
228 |
+
|
229 |
+
if height % 8 != 0 or width % 8 != 0:
|
230 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
231 |
+
|
232 |
+
if (callback_steps is None) or (
|
233 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
234 |
+
):
|
235 |
+
raise ValueError(
|
236 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
237 |
+
f" {type(callback_steps)}."
|
238 |
+
)
|
239 |
+
|
240 |
+
if text_embeddings is None:
|
241 |
+
if isinstance(prompt, str):
|
242 |
+
batch_size = 1
|
243 |
+
elif isinstance(prompt, list):
|
244 |
+
batch_size = len(prompt)
|
245 |
+
else:
|
246 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
247 |
+
|
248 |
+
# get prompt text embeddings
|
249 |
+
text_inputs = self.tokenizer(
|
250 |
+
prompt,
|
251 |
+
padding="max_length",
|
252 |
+
max_length=self.tokenizer.model_max_length,
|
253 |
+
return_tensors="pt",
|
254 |
+
)
|
255 |
+
text_input_ids = text_inputs.input_ids
|
256 |
+
|
257 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
258 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
259 |
+
print(
|
260 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
261 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
262 |
+
)
|
263 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
264 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
265 |
+
else:
|
266 |
+
batch_size = text_embeddings.shape[0]
|
267 |
+
|
268 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
269 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
270 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
271 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
272 |
+
|
273 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
274 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
275 |
+
# corresponds to doing no classifier free guidance.
|
276 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
277 |
+
# get unconditional embeddings for classifier free guidance
|
278 |
+
if do_classifier_free_guidance:
|
279 |
+
uncond_tokens: List[str]
|
280 |
+
if negative_prompt is None:
|
281 |
+
uncond_tokens = [""] * batch_size
|
282 |
+
elif type(prompt) is not type(negative_prompt):
|
283 |
+
raise TypeError(
|
284 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
285 |
+
f" {type(prompt)}."
|
286 |
+
)
|
287 |
+
elif isinstance(negative_prompt, str):
|
288 |
+
uncond_tokens = [negative_prompt]
|
289 |
+
elif batch_size != len(negative_prompt):
|
290 |
+
raise ValueError(
|
291 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
292 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
293 |
+
" the batch size of `prompt`."
|
294 |
+
)
|
295 |
+
else:
|
296 |
+
uncond_tokens = negative_prompt
|
297 |
+
|
298 |
+
max_length = self.tokenizer.model_max_length
|
299 |
+
uncond_input = self.tokenizer(
|
300 |
+
uncond_tokens,
|
301 |
+
padding="max_length",
|
302 |
+
max_length=max_length,
|
303 |
+
truncation=True,
|
304 |
+
return_tensors="pt",
|
305 |
+
)
|
306 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
307 |
+
|
308 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
309 |
+
seq_len = uncond_embeddings.shape[1]
|
310 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
311 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
312 |
+
|
313 |
+
# For classifier free guidance, we need to do two forward passes.
|
314 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
315 |
+
# to avoid doing two forward passes
|
316 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
317 |
+
|
318 |
+
# get the initial random noise unless the user supplied it
|
319 |
+
|
320 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
321 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
322 |
+
# However this currently doesn't work in `mps`.
|
323 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
324 |
+
latents_dtype = text_embeddings.dtype
|
325 |
+
if latents is None:
|
326 |
+
if self.device.type == "mps":
|
327 |
+
# randn does not work reproducibly on mps
|
328 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
329 |
+
self.device
|
330 |
+
)
|
331 |
+
else:
|
332 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
333 |
+
else:
|
334 |
+
if latents.shape != latents_shape:
|
335 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
336 |
+
latents = latents.to(self.device)
|
337 |
+
|
338 |
+
# set timesteps
|
339 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
340 |
+
|
341 |
+
# Some schedulers like PNDM have timesteps as arrays
|
342 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
343 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
344 |
+
|
345 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
346 |
+
latents = latents * self.scheduler.init_noise_sigma
|
347 |
+
|
348 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
349 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
350 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
351 |
+
# and should be between [0, 1]
|
352 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
353 |
+
extra_step_kwargs = {}
|
354 |
+
if accepts_eta:
|
355 |
+
extra_step_kwargs["eta"] = eta
|
356 |
+
|
357 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
358 |
+
# expand the latents if we are doing classifier free guidance
|
359 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
360 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
361 |
+
|
362 |
+
# predict the noise residual
|
363 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
364 |
+
|
365 |
+
# perform guidance
|
366 |
+
if do_classifier_free_guidance:
|
367 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
368 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
369 |
+
|
370 |
+
# compute the previous noisy sample x_t -> x_t-1
|
371 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
372 |
+
|
373 |
+
# call the callback, if provided
|
374 |
+
if callback is not None and i % callback_steps == 0:
|
375 |
+
callback(i, t, latents)
|
376 |
+
|
377 |
+
latents = 1 / 0.18215 * latents
|
378 |
+
image = self.vae.decode(latents).sample
|
379 |
+
|
380 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
381 |
+
|
382 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
383 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
384 |
+
|
385 |
+
if self.safety_checker is not None:
|
386 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
387 |
+
self.device
|
388 |
+
)
|
389 |
+
image, has_nsfw_concept = self.safety_checker(
|
390 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
391 |
+
)
|
392 |
+
else:
|
393 |
+
has_nsfw_concept = None
|
394 |
+
|
395 |
+
if output_type == "pil":
|
396 |
+
image = self.numpy_to_pil(image)
|
397 |
+
|
398 |
+
if not return_dict:
|
399 |
+
return (image, has_nsfw_concept)
|
400 |
+
|
401 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
402 |
+
|
403 |
+
def embed_text(self, text):
|
404 |
+
"""takes in text and turns it into text embeddings"""
|
405 |
+
text_input = self.tokenizer(
|
406 |
+
text,
|
407 |
+
padding="max_length",
|
408 |
+
max_length=self.tokenizer.model_max_length,
|
409 |
+
truncation=True,
|
410 |
+
return_tensors="pt",
|
411 |
+
)
|
412 |
+
with torch.no_grad():
|
413 |
+
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
414 |
+
return embed
|
415 |
+
|
416 |
+
def get_noise(self, seed, dtype=torch.float32, height=512, width=512):
|
417 |
+
"""Takes in random seed and returns corresponding noise vector"""
|
418 |
+
return torch.randn(
|
419 |
+
(1, self.unet.in_channels, height // 8, width // 8),
|
420 |
+
generator=torch.Generator(device=self.device).manual_seed(seed),
|
421 |
+
device=self.device,
|
422 |
+
dtype=dtype,
|
423 |
+
)
|
424 |
+
|
425 |
+
def walk(
|
426 |
+
self,
|
427 |
+
prompts: List[str],
|
428 |
+
seeds: List[int],
|
429 |
+
num_interpolation_steps: Optional[int] = 6,
|
430 |
+
output_dir: Optional[str] = "./dreams",
|
431 |
+
name: Optional[str] = None,
|
432 |
+
batch_size: Optional[int] = 1,
|
433 |
+
height: Optional[int] = 512,
|
434 |
+
width: Optional[int] = 512,
|
435 |
+
guidance_scale: Optional[float] = 7.5,
|
436 |
+
num_inference_steps: Optional[int] = 50,
|
437 |
+
eta: Optional[float] = 0.0,
|
438 |
+
) -> List[str]:
|
439 |
+
"""
|
440 |
+
Walks through a series of prompts and seeds, interpolating between them and saving the results to disk.
|
441 |
+
|
442 |
+
Args:
|
443 |
+
prompts (`List[str]`):
|
444 |
+
List of prompts to generate images for.
|
445 |
+
seeds (`List[int]`):
|
446 |
+
List of seeds corresponding to provided prompts. Must be the same length as prompts.
|
447 |
+
num_interpolation_steps (`int`, *optional*, defaults to 6):
|
448 |
+
Number of interpolation steps to take between prompts.
|
449 |
+
output_dir (`str`, *optional*, defaults to `./dreams`):
|
450 |
+
Directory to save the generated images to.
|
451 |
+
name (`str`, *optional*, defaults to `None`):
|
452 |
+
Subdirectory of `output_dir` to save the generated images to. If `None`, the name will
|
453 |
+
be the current time.
|
454 |
+
batch_size (`int`, *optional*, defaults to 1):
|
455 |
+
Number of images to generate at once.
|
456 |
+
height (`int`, *optional*, defaults to 512):
|
457 |
+
Height of the generated images.
|
458 |
+
width (`int`, *optional*, defaults to 512):
|
459 |
+
Width of the generated images.
|
460 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
461 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
462 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
463 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
464 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
465 |
+
usually at the expense of lower image quality.
|
466 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
467 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
468 |
+
expense of slower inference.
|
469 |
+
eta (`float`, *optional*, defaults to 0.0):
|
470 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
471 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
`List[str]`: List of paths to the generated images.
|
475 |
+
"""
|
476 |
+
if not len(prompts) == len(seeds):
|
477 |
+
raise ValueError(
|
478 |
+
f"Number of prompts and seeds must be equalGot {len(prompts)} prompts and {len(seeds)} seeds"
|
479 |
+
)
|
480 |
+
|
481 |
+
name = name or time.strftime("%Y%m%d-%H%M%S")
|
482 |
+
save_path = Path(output_dir) / name
|
483 |
+
save_path.mkdir(exist_ok=True, parents=True)
|
484 |
+
|
485 |
+
frame_idx = 0
|
486 |
+
frame_filepaths = []
|
487 |
+
for prompt_a, prompt_b, seed_a, seed_b in zip(prompts, prompts[1:], seeds, seeds[1:]):
|
488 |
+
# Embed Text
|
489 |
+
embed_a = self.embed_text(prompt_a)
|
490 |
+
embed_b = self.embed_text(prompt_b)
|
491 |
+
|
492 |
+
# Get Noise
|
493 |
+
noise_dtype = embed_a.dtype
|
494 |
+
noise_a = self.get_noise(seed_a, noise_dtype, height, width)
|
495 |
+
noise_b = self.get_noise(seed_b, noise_dtype, height, width)
|
496 |
+
|
497 |
+
noise_batch, embeds_batch = None, None
|
498 |
+
T = np.linspace(0.0, 1.0, num_interpolation_steps)
|
499 |
+
for i, t in enumerate(T):
|
500 |
+
noise = slerp(float(t), noise_a, noise_b)
|
501 |
+
embed = torch.lerp(embed_a, embed_b, t)
|
502 |
+
|
503 |
+
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise], dim=0)
|
504 |
+
embeds_batch = embed if embeds_batch is None else torch.cat([embeds_batch, embed], dim=0)
|
505 |
+
|
506 |
+
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
|
507 |
+
if batch_is_ready:
|
508 |
+
outputs = self(
|
509 |
+
latents=noise_batch,
|
510 |
+
text_embeddings=embeds_batch,
|
511 |
+
height=height,
|
512 |
+
width=width,
|
513 |
+
guidance_scale=guidance_scale,
|
514 |
+
eta=eta,
|
515 |
+
num_inference_steps=num_inference_steps,
|
516 |
+
)
|
517 |
+
noise_batch, embeds_batch = None, None
|
518 |
+
|
519 |
+
for image in outputs["images"]:
|
520 |
+
frame_filepath = str(save_path / f"frame_{frame_idx:06d}.png")
|
521 |
+
image.save(frame_filepath)
|
522 |
+
frame_filepaths.append(frame_filepath)
|
523 |
+
frame_idx += 1
|
524 |
+
return frame_filepaths
|
v0.11.0/lpw_stable_diffusion.py
ADDED
@@ -0,0 +1,1162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import re
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import diffusers
|
9 |
+
import PIL
|
10 |
+
from diffusers import SchedulerMixin, StableDiffusionPipeline
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
13 |
+
from diffusers.utils import deprecate, logging
|
14 |
+
from packaging import version
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
try:
|
19 |
+
from diffusers.utils import PIL_INTERPOLATION
|
20 |
+
except ImportError:
|
21 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
22 |
+
PIL_INTERPOLATION = {
|
23 |
+
"linear": PIL.Image.Resampling.BILINEAR,
|
24 |
+
"bilinear": PIL.Image.Resampling.BILINEAR,
|
25 |
+
"bicubic": PIL.Image.Resampling.BICUBIC,
|
26 |
+
"lanczos": PIL.Image.Resampling.LANCZOS,
|
27 |
+
"nearest": PIL.Image.Resampling.NEAREST,
|
28 |
+
}
|
29 |
+
else:
|
30 |
+
PIL_INTERPOLATION = {
|
31 |
+
"linear": PIL.Image.LINEAR,
|
32 |
+
"bilinear": PIL.Image.BILINEAR,
|
33 |
+
"bicubic": PIL.Image.BICUBIC,
|
34 |
+
"lanczos": PIL.Image.LANCZOS,
|
35 |
+
"nearest": PIL.Image.NEAREST,
|
36 |
+
}
|
37 |
+
# ------------------------------------------------------------------------------
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
40 |
+
|
41 |
+
re_attention = re.compile(
|
42 |
+
r"""
|
43 |
+
\\\(|
|
44 |
+
\\\)|
|
45 |
+
\\\[|
|
46 |
+
\\]|
|
47 |
+
\\\\|
|
48 |
+
\\|
|
49 |
+
\(|
|
50 |
+
\[|
|
51 |
+
:([+-]?[.\d]+)\)|
|
52 |
+
\)|
|
53 |
+
]|
|
54 |
+
[^\\()\[\]:]+|
|
55 |
+
:
|
56 |
+
""",
|
57 |
+
re.X,
|
58 |
+
)
|
59 |
+
|
60 |
+
|
61 |
+
def parse_prompt_attention(text):
|
62 |
+
"""
|
63 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
64 |
+
Accepted tokens are:
|
65 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
66 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
67 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
68 |
+
\( - literal character '('
|
69 |
+
\[ - literal character '['
|
70 |
+
\) - literal character ')'
|
71 |
+
\] - literal character ']'
|
72 |
+
\\ - literal character '\'
|
73 |
+
anything else - just text
|
74 |
+
>>> parse_prompt_attention('normal text')
|
75 |
+
[['normal text', 1.0]]
|
76 |
+
>>> parse_prompt_attention('an (important) word')
|
77 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
78 |
+
>>> parse_prompt_attention('(unbalanced')
|
79 |
+
[['unbalanced', 1.1]]
|
80 |
+
>>> parse_prompt_attention('\(literal\]')
|
81 |
+
[['(literal]', 1.0]]
|
82 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
83 |
+
[['unnecessaryparens', 1.1]]
|
84 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
85 |
+
[['a ', 1.0],
|
86 |
+
['house', 1.5730000000000004],
|
87 |
+
[' ', 1.1],
|
88 |
+
['on', 1.0],
|
89 |
+
[' a ', 1.1],
|
90 |
+
['hill', 0.55],
|
91 |
+
[', sun, ', 1.1],
|
92 |
+
['sky', 1.4641000000000006],
|
93 |
+
['.', 1.1]]
|
94 |
+
"""
|
95 |
+
|
96 |
+
res = []
|
97 |
+
round_brackets = []
|
98 |
+
square_brackets = []
|
99 |
+
|
100 |
+
round_bracket_multiplier = 1.1
|
101 |
+
square_bracket_multiplier = 1 / 1.1
|
102 |
+
|
103 |
+
def multiply_range(start_position, multiplier):
|
104 |
+
for p in range(start_position, len(res)):
|
105 |
+
res[p][1] *= multiplier
|
106 |
+
|
107 |
+
for m in re_attention.finditer(text):
|
108 |
+
text = m.group(0)
|
109 |
+
weight = m.group(1)
|
110 |
+
|
111 |
+
if text.startswith("\\"):
|
112 |
+
res.append([text[1:], 1.0])
|
113 |
+
elif text == "(":
|
114 |
+
round_brackets.append(len(res))
|
115 |
+
elif text == "[":
|
116 |
+
square_brackets.append(len(res))
|
117 |
+
elif weight is not None and len(round_brackets) > 0:
|
118 |
+
multiply_range(round_brackets.pop(), float(weight))
|
119 |
+
elif text == ")" and len(round_brackets) > 0:
|
120 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
121 |
+
elif text == "]" and len(square_brackets) > 0:
|
122 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
123 |
+
else:
|
124 |
+
res.append([text, 1.0])
|
125 |
+
|
126 |
+
for pos in round_brackets:
|
127 |
+
multiply_range(pos, round_bracket_multiplier)
|
128 |
+
|
129 |
+
for pos in square_brackets:
|
130 |
+
multiply_range(pos, square_bracket_multiplier)
|
131 |
+
|
132 |
+
if len(res) == 0:
|
133 |
+
res = [["", 1.0]]
|
134 |
+
|
135 |
+
# merge runs of identical weights
|
136 |
+
i = 0
|
137 |
+
while i + 1 < len(res):
|
138 |
+
if res[i][1] == res[i + 1][1]:
|
139 |
+
res[i][0] += res[i + 1][0]
|
140 |
+
res.pop(i + 1)
|
141 |
+
else:
|
142 |
+
i += 1
|
143 |
+
|
144 |
+
return res
|
145 |
+
|
146 |
+
|
147 |
+
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int):
|
148 |
+
r"""
|
149 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
150 |
+
|
151 |
+
No padding, starting or ending token is included.
|
152 |
+
"""
|
153 |
+
tokens = []
|
154 |
+
weights = []
|
155 |
+
truncated = False
|
156 |
+
for text in prompt:
|
157 |
+
texts_and_weights = parse_prompt_attention(text)
|
158 |
+
text_token = []
|
159 |
+
text_weight = []
|
160 |
+
for word, weight in texts_and_weights:
|
161 |
+
# tokenize and discard the starting and the ending token
|
162 |
+
token = pipe.tokenizer(word).input_ids[1:-1]
|
163 |
+
text_token += token
|
164 |
+
# copy the weight by length of token
|
165 |
+
text_weight += [weight] * len(token)
|
166 |
+
# stop if the text is too long (longer than truncation limit)
|
167 |
+
if len(text_token) > max_length:
|
168 |
+
truncated = True
|
169 |
+
break
|
170 |
+
# truncate
|
171 |
+
if len(text_token) > max_length:
|
172 |
+
truncated = True
|
173 |
+
text_token = text_token[:max_length]
|
174 |
+
text_weight = text_weight[:max_length]
|
175 |
+
tokens.append(text_token)
|
176 |
+
weights.append(text_weight)
|
177 |
+
if truncated:
|
178 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
179 |
+
return tokens, weights
|
180 |
+
|
181 |
+
|
182 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
183 |
+
r"""
|
184 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
185 |
+
"""
|
186 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
187 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
188 |
+
for i in range(len(tokens)):
|
189 |
+
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
190 |
+
if no_boseos_middle:
|
191 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
192 |
+
else:
|
193 |
+
w = []
|
194 |
+
if len(weights[i]) == 0:
|
195 |
+
w = [1.0] * weights_length
|
196 |
+
else:
|
197 |
+
for j in range(max_embeddings_multiples):
|
198 |
+
w.append(1.0) # weight for starting token in this chunk
|
199 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
200 |
+
w.append(1.0) # weight for ending token in this chunk
|
201 |
+
w += [1.0] * (weights_length - len(w))
|
202 |
+
weights[i] = w[:]
|
203 |
+
|
204 |
+
return tokens, weights
|
205 |
+
|
206 |
+
|
207 |
+
def get_unweighted_text_embeddings(
|
208 |
+
pipe: StableDiffusionPipeline,
|
209 |
+
text_input: torch.Tensor,
|
210 |
+
chunk_length: int,
|
211 |
+
no_boseos_middle: Optional[bool] = True,
|
212 |
+
):
|
213 |
+
"""
|
214 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
215 |
+
it should be split into chunks and sent to the text encoder individually.
|
216 |
+
"""
|
217 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
218 |
+
if max_embeddings_multiples > 1:
|
219 |
+
text_embeddings = []
|
220 |
+
for i in range(max_embeddings_multiples):
|
221 |
+
# extract the i-th chunk
|
222 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()
|
223 |
+
|
224 |
+
# cover the head and the tail by the starting and the ending tokens
|
225 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
226 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
227 |
+
text_embedding = pipe.text_encoder(text_input_chunk)[0]
|
228 |
+
|
229 |
+
if no_boseos_middle:
|
230 |
+
if i == 0:
|
231 |
+
# discard the ending token
|
232 |
+
text_embedding = text_embedding[:, :-1]
|
233 |
+
elif i == max_embeddings_multiples - 1:
|
234 |
+
# discard the starting token
|
235 |
+
text_embedding = text_embedding[:, 1:]
|
236 |
+
else:
|
237 |
+
# discard both starting and ending tokens
|
238 |
+
text_embedding = text_embedding[:, 1:-1]
|
239 |
+
|
240 |
+
text_embeddings.append(text_embedding)
|
241 |
+
text_embeddings = torch.concat(text_embeddings, axis=1)
|
242 |
+
else:
|
243 |
+
text_embeddings = pipe.text_encoder(text_input)[0]
|
244 |
+
return text_embeddings
|
245 |
+
|
246 |
+
|
247 |
+
def get_weighted_text_embeddings(
|
248 |
+
pipe: StableDiffusionPipeline,
|
249 |
+
prompt: Union[str, List[str]],
|
250 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
251 |
+
max_embeddings_multiples: Optional[int] = 3,
|
252 |
+
no_boseos_middle: Optional[bool] = False,
|
253 |
+
skip_parsing: Optional[bool] = False,
|
254 |
+
skip_weighting: Optional[bool] = False,
|
255 |
+
**kwargs,
|
256 |
+
):
|
257 |
+
r"""
|
258 |
+
Prompts can be assigned with local weights using brackets. For example,
|
259 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
260 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
261 |
+
|
262 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
pipe (`StableDiffusionPipeline`):
|
266 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
267 |
+
prompt (`str` or `List[str]`):
|
268 |
+
The prompt or prompts to guide the image generation.
|
269 |
+
uncond_prompt (`str` or `List[str]`):
|
270 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
271 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
272 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
273 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
274 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
275 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
276 |
+
ending token in each of the chunk in the middle.
|
277 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
278 |
+
Skip the parsing of brackets.
|
279 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
280 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
281 |
+
"""
|
282 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
283 |
+
if isinstance(prompt, str):
|
284 |
+
prompt = [prompt]
|
285 |
+
|
286 |
+
if not skip_parsing:
|
287 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
288 |
+
if uncond_prompt is not None:
|
289 |
+
if isinstance(uncond_prompt, str):
|
290 |
+
uncond_prompt = [uncond_prompt]
|
291 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
292 |
+
else:
|
293 |
+
prompt_tokens = [
|
294 |
+
token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
|
295 |
+
]
|
296 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
297 |
+
if uncond_prompt is not None:
|
298 |
+
if isinstance(uncond_prompt, str):
|
299 |
+
uncond_prompt = [uncond_prompt]
|
300 |
+
uncond_tokens = [
|
301 |
+
token[1:-1]
|
302 |
+
for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
|
303 |
+
]
|
304 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
305 |
+
|
306 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
307 |
+
max_length = max([len(token) for token in prompt_tokens])
|
308 |
+
if uncond_prompt is not None:
|
309 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
310 |
+
|
311 |
+
max_embeddings_multiples = min(
|
312 |
+
max_embeddings_multiples,
|
313 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
314 |
+
)
|
315 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
316 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
317 |
+
|
318 |
+
# pad the length of tokens and weights
|
319 |
+
bos = pipe.tokenizer.bos_token_id
|
320 |
+
eos = pipe.tokenizer.eos_token_id
|
321 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
322 |
+
prompt_tokens,
|
323 |
+
prompt_weights,
|
324 |
+
max_length,
|
325 |
+
bos,
|
326 |
+
eos,
|
327 |
+
no_boseos_middle=no_boseos_middle,
|
328 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
329 |
+
)
|
330 |
+
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
|
331 |
+
if uncond_prompt is not None:
|
332 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
333 |
+
uncond_tokens,
|
334 |
+
uncond_weights,
|
335 |
+
max_length,
|
336 |
+
bos,
|
337 |
+
eos,
|
338 |
+
no_boseos_middle=no_boseos_middle,
|
339 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
340 |
+
)
|
341 |
+
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)
|
342 |
+
|
343 |
+
# get the embeddings
|
344 |
+
text_embeddings = get_unweighted_text_embeddings(
|
345 |
+
pipe,
|
346 |
+
prompt_tokens,
|
347 |
+
pipe.tokenizer.model_max_length,
|
348 |
+
no_boseos_middle=no_boseos_middle,
|
349 |
+
)
|
350 |
+
prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
|
351 |
+
if uncond_prompt is not None:
|
352 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
353 |
+
pipe,
|
354 |
+
uncond_tokens,
|
355 |
+
pipe.tokenizer.model_max_length,
|
356 |
+
no_boseos_middle=no_boseos_middle,
|
357 |
+
)
|
358 |
+
uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)
|
359 |
+
|
360 |
+
# assign weights to the prompts and normalize in the sense of mean
|
361 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
362 |
+
if (not skip_parsing) and (not skip_weighting):
|
363 |
+
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
364 |
+
text_embeddings *= prompt_weights.unsqueeze(-1)
|
365 |
+
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
|
366 |
+
text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
367 |
+
if uncond_prompt is not None:
|
368 |
+
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
369 |
+
uncond_embeddings *= uncond_weights.unsqueeze(-1)
|
370 |
+
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
|
371 |
+
uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
|
372 |
+
|
373 |
+
if uncond_prompt is not None:
|
374 |
+
return text_embeddings, uncond_embeddings
|
375 |
+
return text_embeddings, None
|
376 |
+
|
377 |
+
|
378 |
+
def preprocess_image(image):
|
379 |
+
w, h = image.size
|
380 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
381 |
+
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
382 |
+
image = np.array(image).astype(np.float32) / 255.0
|
383 |
+
image = image[None].transpose(0, 3, 1, 2)
|
384 |
+
image = torch.from_numpy(image)
|
385 |
+
return 2.0 * image - 1.0
|
386 |
+
|
387 |
+
|
388 |
+
def preprocess_mask(mask, scale_factor=8):
|
389 |
+
mask = mask.convert("L")
|
390 |
+
w, h = mask.size
|
391 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
392 |
+
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
393 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
394 |
+
mask = np.tile(mask, (4, 1, 1))
|
395 |
+
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
396 |
+
mask = 1 - mask # repaint white, keep black
|
397 |
+
mask = torch.from_numpy(mask)
|
398 |
+
return mask
|
399 |
+
|
400 |
+
|
401 |
+
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
|
402 |
+
r"""
|
403 |
+
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
404 |
+
weighting in prompt.
|
405 |
+
|
406 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
407 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
408 |
+
|
409 |
+
Args:
|
410 |
+
vae ([`AutoencoderKL`]):
|
411 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
412 |
+
text_encoder ([`CLIPTextModel`]):
|
413 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
414 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
415 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
416 |
+
tokenizer (`CLIPTokenizer`):
|
417 |
+
Tokenizer of class
|
418 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
419 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
420 |
+
scheduler ([`SchedulerMixin`]):
|
421 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
422 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
423 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
424 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
425 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
426 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
427 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
428 |
+
"""
|
429 |
+
|
430 |
+
if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"):
|
431 |
+
|
432 |
+
def __init__(
|
433 |
+
self,
|
434 |
+
vae: AutoencoderKL,
|
435 |
+
text_encoder: CLIPTextModel,
|
436 |
+
tokenizer: CLIPTokenizer,
|
437 |
+
unet: UNet2DConditionModel,
|
438 |
+
scheduler: SchedulerMixin,
|
439 |
+
safety_checker: StableDiffusionSafetyChecker,
|
440 |
+
feature_extractor: CLIPFeatureExtractor,
|
441 |
+
requires_safety_checker: bool = True,
|
442 |
+
):
|
443 |
+
super().__init__(
|
444 |
+
vae=vae,
|
445 |
+
text_encoder=text_encoder,
|
446 |
+
tokenizer=tokenizer,
|
447 |
+
unet=unet,
|
448 |
+
scheduler=scheduler,
|
449 |
+
safety_checker=safety_checker,
|
450 |
+
feature_extractor=feature_extractor,
|
451 |
+
requires_safety_checker=requires_safety_checker,
|
452 |
+
)
|
453 |
+
self.__init__additional__()
|
454 |
+
|
455 |
+
else:
|
456 |
+
|
457 |
+
def __init__(
|
458 |
+
self,
|
459 |
+
vae: AutoencoderKL,
|
460 |
+
text_encoder: CLIPTextModel,
|
461 |
+
tokenizer: CLIPTokenizer,
|
462 |
+
unet: UNet2DConditionModel,
|
463 |
+
scheduler: SchedulerMixin,
|
464 |
+
safety_checker: StableDiffusionSafetyChecker,
|
465 |
+
feature_extractor: CLIPFeatureExtractor,
|
466 |
+
):
|
467 |
+
super().__init__(
|
468 |
+
vae=vae,
|
469 |
+
text_encoder=text_encoder,
|
470 |
+
tokenizer=tokenizer,
|
471 |
+
unet=unet,
|
472 |
+
scheduler=scheduler,
|
473 |
+
safety_checker=safety_checker,
|
474 |
+
feature_extractor=feature_extractor,
|
475 |
+
)
|
476 |
+
self.__init__additional__()
|
477 |
+
|
478 |
+
def __init__additional__(self):
|
479 |
+
if not hasattr(self, "vae_scale_factor"):
|
480 |
+
setattr(self, "vae_scale_factor", 2 ** (len(self.vae.config.block_out_channels) - 1))
|
481 |
+
|
482 |
+
@property
|
483 |
+
def _execution_device(self):
|
484 |
+
r"""
|
485 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
486 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
487 |
+
hooks.
|
488 |
+
"""
|
489 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
490 |
+
return self.device
|
491 |
+
for module in self.unet.modules():
|
492 |
+
if (
|
493 |
+
hasattr(module, "_hf_hook")
|
494 |
+
and hasattr(module._hf_hook, "execution_device")
|
495 |
+
and module._hf_hook.execution_device is not None
|
496 |
+
):
|
497 |
+
return torch.device(module._hf_hook.execution_device)
|
498 |
+
return self.device
|
499 |
+
|
500 |
+
def _encode_prompt(
|
501 |
+
self,
|
502 |
+
prompt,
|
503 |
+
device,
|
504 |
+
num_images_per_prompt,
|
505 |
+
do_classifier_free_guidance,
|
506 |
+
negative_prompt,
|
507 |
+
max_embeddings_multiples,
|
508 |
+
):
|
509 |
+
r"""
|
510 |
+
Encodes the prompt into text encoder hidden states.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
prompt (`str` or `list(int)`):
|
514 |
+
prompt to be encoded
|
515 |
+
device: (`torch.device`):
|
516 |
+
torch device
|
517 |
+
num_images_per_prompt (`int`):
|
518 |
+
number of images that should be generated per prompt
|
519 |
+
do_classifier_free_guidance (`bool`):
|
520 |
+
whether to use classifier free guidance or not
|
521 |
+
negative_prompt (`str` or `List[str]`):
|
522 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
523 |
+
if `guidance_scale` is less than `1`).
|
524 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
525 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
526 |
+
"""
|
527 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
528 |
+
|
529 |
+
if negative_prompt is None:
|
530 |
+
negative_prompt = [""] * batch_size
|
531 |
+
elif isinstance(negative_prompt, str):
|
532 |
+
negative_prompt = [negative_prompt] * batch_size
|
533 |
+
if batch_size != len(negative_prompt):
|
534 |
+
raise ValueError(
|
535 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
536 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
537 |
+
" the batch size of `prompt`."
|
538 |
+
)
|
539 |
+
|
540 |
+
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
541 |
+
pipe=self,
|
542 |
+
prompt=prompt,
|
543 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
544 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
545 |
+
)
|
546 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
547 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
548 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
549 |
+
|
550 |
+
if do_classifier_free_guidance:
|
551 |
+
bs_embed, seq_len, _ = uncond_embeddings.shape
|
552 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
553 |
+
uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
554 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
555 |
+
|
556 |
+
return text_embeddings
|
557 |
+
|
558 |
+
def check_inputs(self, prompt, height, width, strength, callback_steps):
|
559 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
560 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
561 |
+
|
562 |
+
if strength < 0 or strength > 1:
|
563 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
564 |
+
|
565 |
+
if height % 8 != 0 or width % 8 != 0:
|
566 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
567 |
+
|
568 |
+
if (callback_steps is None) or (
|
569 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
570 |
+
):
|
571 |
+
raise ValueError(
|
572 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
573 |
+
f" {type(callback_steps)}."
|
574 |
+
)
|
575 |
+
|
576 |
+
def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
|
577 |
+
if is_text2img:
|
578 |
+
return self.scheduler.timesteps.to(device), num_inference_steps
|
579 |
+
else:
|
580 |
+
# get the original timestep using init_timestep
|
581 |
+
offset = self.scheduler.config.get("steps_offset", 0)
|
582 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
583 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
584 |
+
|
585 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
586 |
+
timesteps = self.scheduler.timesteps[t_start:].to(device)
|
587 |
+
return timesteps, num_inference_steps - t_start
|
588 |
+
|
589 |
+
def run_safety_checker(self, image, device, dtype):
|
590 |
+
if self.safety_checker is not None:
|
591 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
592 |
+
image, has_nsfw_concept = self.safety_checker(
|
593 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
594 |
+
)
|
595 |
+
else:
|
596 |
+
has_nsfw_concept = None
|
597 |
+
return image, has_nsfw_concept
|
598 |
+
|
599 |
+
def decode_latents(self, latents):
|
600 |
+
latents = 1 / 0.18215 * latents
|
601 |
+
image = self.vae.decode(latents).sample
|
602 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
603 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
604 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
605 |
+
return image
|
606 |
+
|
607 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
608 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
609 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
610 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
611 |
+
# and should be between [0, 1]
|
612 |
+
|
613 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
614 |
+
extra_step_kwargs = {}
|
615 |
+
if accepts_eta:
|
616 |
+
extra_step_kwargs["eta"] = eta
|
617 |
+
|
618 |
+
# check if the scheduler accepts generator
|
619 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
620 |
+
if accepts_generator:
|
621 |
+
extra_step_kwargs["generator"] = generator
|
622 |
+
return extra_step_kwargs
|
623 |
+
|
624 |
+
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None):
|
625 |
+
if image is None:
|
626 |
+
shape = (
|
627 |
+
batch_size,
|
628 |
+
self.unet.in_channels,
|
629 |
+
height // self.vae_scale_factor,
|
630 |
+
width // self.vae_scale_factor,
|
631 |
+
)
|
632 |
+
|
633 |
+
if latents is None:
|
634 |
+
if device.type == "mps":
|
635 |
+
# randn does not work reproducibly on mps
|
636 |
+
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
637 |
+
else:
|
638 |
+
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
639 |
+
else:
|
640 |
+
if latents.shape != shape:
|
641 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
642 |
+
latents = latents.to(device)
|
643 |
+
|
644 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
645 |
+
latents = latents * self.scheduler.init_noise_sigma
|
646 |
+
return latents, None, None
|
647 |
+
else:
|
648 |
+
init_latent_dist = self.vae.encode(image).latent_dist
|
649 |
+
init_latents = init_latent_dist.sample(generator=generator)
|
650 |
+
init_latents = 0.18215 * init_latents
|
651 |
+
init_latents = torch.cat([init_latents] * batch_size, dim=0)
|
652 |
+
init_latents_orig = init_latents
|
653 |
+
shape = init_latents.shape
|
654 |
+
|
655 |
+
# add noise to latents using the timesteps
|
656 |
+
if device.type == "mps":
|
657 |
+
noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
658 |
+
else:
|
659 |
+
noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
660 |
+
latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
661 |
+
return latents, init_latents_orig, noise
|
662 |
+
|
663 |
+
@torch.no_grad()
|
664 |
+
def __call__(
|
665 |
+
self,
|
666 |
+
prompt: Union[str, List[str]],
|
667 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
668 |
+
image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
669 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
|
670 |
+
height: int = 512,
|
671 |
+
width: int = 512,
|
672 |
+
num_inference_steps: int = 50,
|
673 |
+
guidance_scale: float = 7.5,
|
674 |
+
strength: float = 0.8,
|
675 |
+
num_images_per_prompt: Optional[int] = 1,
|
676 |
+
eta: float = 0.0,
|
677 |
+
generator: Optional[torch.Generator] = None,
|
678 |
+
latents: Optional[torch.FloatTensor] = None,
|
679 |
+
max_embeddings_multiples: Optional[int] = 3,
|
680 |
+
output_type: Optional[str] = "pil",
|
681 |
+
return_dict: bool = True,
|
682 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
683 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
684 |
+
callback_steps: Optional[int] = 1,
|
685 |
+
**kwargs,
|
686 |
+
):
|
687 |
+
r"""
|
688 |
+
Function invoked when calling the pipeline for generation.
|
689 |
+
|
690 |
+
Args:
|
691 |
+
prompt (`str` or `List[str]`):
|
692 |
+
The prompt or prompts to guide the image generation.
|
693 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
694 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
695 |
+
if `guidance_scale` is less than `1`).
|
696 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
697 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
698 |
+
process.
|
699 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
700 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
701 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
702 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
703 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
704 |
+
height (`int`, *optional*, defaults to 512):
|
705 |
+
The height in pixels of the generated image.
|
706 |
+
width (`int`, *optional*, defaults to 512):
|
707 |
+
The width in pixels of the generated image.
|
708 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
709 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
710 |
+
expense of slower inference.
|
711 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
712 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
713 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
714 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
715 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
716 |
+
usually at the expense of lower image quality.
|
717 |
+
strength (`float`, *optional*, defaults to 0.8):
|
718 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
719 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
720 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
721 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
722 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
723 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
724 |
+
The number of images to generate per prompt.
|
725 |
+
eta (`float`, *optional*, defaults to 0.0):
|
726 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
727 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
728 |
+
generator (`torch.Generator`, *optional*):
|
729 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
730 |
+
deterministic.
|
731 |
+
latents (`torch.FloatTensor`, *optional*):
|
732 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
733 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
734 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
735 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
736 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
737 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
738 |
+
The output format of the generate image. Choose between
|
739 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
740 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
741 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
742 |
+
plain tuple.
|
743 |
+
callback (`Callable`, *optional*):
|
744 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
745 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
746 |
+
is_cancelled_callback (`Callable`, *optional*):
|
747 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
748 |
+
`True`, the inference will be cancelled.
|
749 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
750 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
751 |
+
called at every step.
|
752 |
+
|
753 |
+
Returns:
|
754 |
+
`None` if cancelled by `is_cancelled_callback`,
|
755 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
756 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
757 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
758 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
759 |
+
(nsfw) content, according to the `safety_checker`.
|
760 |
+
"""
|
761 |
+
message = "Please use `image` instead of `init_image`."
|
762 |
+
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
763 |
+
image = init_image or image
|
764 |
+
|
765 |
+
# 0. Default height and width to unet
|
766 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
767 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
768 |
+
|
769 |
+
# 1. Check inputs. Raise error if not correct
|
770 |
+
self.check_inputs(prompt, height, width, strength, callback_steps)
|
771 |
+
|
772 |
+
# 2. Define call parameters
|
773 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
774 |
+
device = self._execution_device
|
775 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
776 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
777 |
+
# corresponds to doing no classifier free guidance.
|
778 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
779 |
+
|
780 |
+
# 3. Encode input prompt
|
781 |
+
text_embeddings = self._encode_prompt(
|
782 |
+
prompt,
|
783 |
+
device,
|
784 |
+
num_images_per_prompt,
|
785 |
+
do_classifier_free_guidance,
|
786 |
+
negative_prompt,
|
787 |
+
max_embeddings_multiples,
|
788 |
+
)
|
789 |
+
dtype = text_embeddings.dtype
|
790 |
+
|
791 |
+
# 4. Preprocess image and mask
|
792 |
+
if isinstance(image, PIL.Image.Image):
|
793 |
+
image = preprocess_image(image)
|
794 |
+
if image is not None:
|
795 |
+
image = image.to(device=self.device, dtype=dtype)
|
796 |
+
if isinstance(mask_image, PIL.Image.Image):
|
797 |
+
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
798 |
+
if mask_image is not None:
|
799 |
+
mask = mask_image.to(device=self.device, dtype=dtype)
|
800 |
+
mask = torch.cat([mask] * batch_size * num_images_per_prompt)
|
801 |
+
else:
|
802 |
+
mask = None
|
803 |
+
|
804 |
+
# 5. set timesteps
|
805 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
806 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None)
|
807 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
808 |
+
|
809 |
+
# 6. Prepare latent variables
|
810 |
+
latents, init_latents_orig, noise = self.prepare_latents(
|
811 |
+
image,
|
812 |
+
latent_timestep,
|
813 |
+
batch_size * num_images_per_prompt,
|
814 |
+
height,
|
815 |
+
width,
|
816 |
+
dtype,
|
817 |
+
device,
|
818 |
+
generator,
|
819 |
+
latents,
|
820 |
+
)
|
821 |
+
|
822 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
823 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
824 |
+
|
825 |
+
# 8. Denoising loop
|
826 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
827 |
+
# expand the latents if we are doing classifier free guidance
|
828 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
829 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
830 |
+
|
831 |
+
# predict the noise residual
|
832 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
833 |
+
|
834 |
+
# perform guidance
|
835 |
+
if do_classifier_free_guidance:
|
836 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
837 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
838 |
+
|
839 |
+
# compute the previous noisy sample x_t -> x_t-1
|
840 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
841 |
+
|
842 |
+
if mask is not None:
|
843 |
+
# masking
|
844 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
|
845 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
846 |
+
|
847 |
+
# call the callback, if provided
|
848 |
+
if i % callback_steps == 0:
|
849 |
+
if callback is not None:
|
850 |
+
callback(i, t, latents)
|
851 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
852 |
+
return None
|
853 |
+
|
854 |
+
# 9. Post-processing
|
855 |
+
image = self.decode_latents(latents)
|
856 |
+
|
857 |
+
# 10. Run safety checker
|
858 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
859 |
+
|
860 |
+
# 11. Convert to PIL
|
861 |
+
if output_type == "pil":
|
862 |
+
image = self.numpy_to_pil(image)
|
863 |
+
|
864 |
+
if not return_dict:
|
865 |
+
return image, has_nsfw_concept
|
866 |
+
|
867 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
868 |
+
|
869 |
+
def text2img(
|
870 |
+
self,
|
871 |
+
prompt: Union[str, List[str]],
|
872 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
873 |
+
height: int = 512,
|
874 |
+
width: int = 512,
|
875 |
+
num_inference_steps: int = 50,
|
876 |
+
guidance_scale: float = 7.5,
|
877 |
+
num_images_per_prompt: Optional[int] = 1,
|
878 |
+
eta: float = 0.0,
|
879 |
+
generator: Optional[torch.Generator] = None,
|
880 |
+
latents: Optional[torch.FloatTensor] = None,
|
881 |
+
max_embeddings_multiples: Optional[int] = 3,
|
882 |
+
output_type: Optional[str] = "pil",
|
883 |
+
return_dict: bool = True,
|
884 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
885 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
886 |
+
callback_steps: Optional[int] = 1,
|
887 |
+
**kwargs,
|
888 |
+
):
|
889 |
+
r"""
|
890 |
+
Function for text-to-image generation.
|
891 |
+
Args:
|
892 |
+
prompt (`str` or `List[str]`):
|
893 |
+
The prompt or prompts to guide the image generation.
|
894 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
895 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
896 |
+
if `guidance_scale` is less than `1`).
|
897 |
+
height (`int`, *optional*, defaults to 512):
|
898 |
+
The height in pixels of the generated image.
|
899 |
+
width (`int`, *optional*, defaults to 512):
|
900 |
+
The width in pixels of the generated image.
|
901 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
902 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
903 |
+
expense of slower inference.
|
904 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
905 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
906 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
907 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
908 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
909 |
+
usually at the expense of lower image quality.
|
910 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
911 |
+
The number of images to generate per prompt.
|
912 |
+
eta (`float`, *optional*, defaults to 0.0):
|
913 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
914 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
915 |
+
generator (`torch.Generator`, *optional*):
|
916 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
917 |
+
deterministic.
|
918 |
+
latents (`torch.FloatTensor`, *optional*):
|
919 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
920 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
921 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
922 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
923 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
924 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
925 |
+
The output format of the generate image. Choose between
|
926 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
927 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
928 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
929 |
+
plain tuple.
|
930 |
+
callback (`Callable`, *optional*):
|
931 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
932 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
933 |
+
is_cancelled_callback (`Callable`, *optional*):
|
934 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
935 |
+
`True`, the inference will be cancelled.
|
936 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
937 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
938 |
+
called at every step.
|
939 |
+
Returns:
|
940 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
941 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
942 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
943 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
944 |
+
(nsfw) content, according to the `safety_checker`.
|
945 |
+
"""
|
946 |
+
return self.__call__(
|
947 |
+
prompt=prompt,
|
948 |
+
negative_prompt=negative_prompt,
|
949 |
+
height=height,
|
950 |
+
width=width,
|
951 |
+
num_inference_steps=num_inference_steps,
|
952 |
+
guidance_scale=guidance_scale,
|
953 |
+
num_images_per_prompt=num_images_per_prompt,
|
954 |
+
eta=eta,
|
955 |
+
generator=generator,
|
956 |
+
latents=latents,
|
957 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
958 |
+
output_type=output_type,
|
959 |
+
return_dict=return_dict,
|
960 |
+
callback=callback,
|
961 |
+
is_cancelled_callback=is_cancelled_callback,
|
962 |
+
callback_steps=callback_steps,
|
963 |
+
**kwargs,
|
964 |
+
)
|
965 |
+
|
966 |
+
def img2img(
|
967 |
+
self,
|
968 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
969 |
+
prompt: Union[str, List[str]],
|
970 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
971 |
+
strength: float = 0.8,
|
972 |
+
num_inference_steps: Optional[int] = 50,
|
973 |
+
guidance_scale: Optional[float] = 7.5,
|
974 |
+
num_images_per_prompt: Optional[int] = 1,
|
975 |
+
eta: Optional[float] = 0.0,
|
976 |
+
generator: Optional[torch.Generator] = None,
|
977 |
+
max_embeddings_multiples: Optional[int] = 3,
|
978 |
+
output_type: Optional[str] = "pil",
|
979 |
+
return_dict: bool = True,
|
980 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
981 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
982 |
+
callback_steps: Optional[int] = 1,
|
983 |
+
**kwargs,
|
984 |
+
):
|
985 |
+
r"""
|
986 |
+
Function for image-to-image generation.
|
987 |
+
Args:
|
988 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
989 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
990 |
+
process.
|
991 |
+
prompt (`str` or `List[str]`):
|
992 |
+
The prompt or prompts to guide the image generation.
|
993 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
994 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
995 |
+
if `guidance_scale` is less than `1`).
|
996 |
+
strength (`float`, *optional*, defaults to 0.8):
|
997 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
998 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
999 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
1000 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
1001 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
1002 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1003 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1004 |
+
expense of slower inference. This parameter will be modulated by `strength`.
|
1005 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1006 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1007 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1008 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1009 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1010 |
+
usually at the expense of lower image quality.
|
1011 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1012 |
+
The number of images to generate per prompt.
|
1013 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1014 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1015 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1016 |
+
generator (`torch.Generator`, *optional*):
|
1017 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
1018 |
+
deterministic.
|
1019 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
1020 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
1021 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1022 |
+
The output format of the generate image. Choose between
|
1023 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1024 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1025 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1026 |
+
plain tuple.
|
1027 |
+
callback (`Callable`, *optional*):
|
1028 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1029 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1030 |
+
is_cancelled_callback (`Callable`, *optional*):
|
1031 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
1032 |
+
`True`, the inference will be cancelled.
|
1033 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1034 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1035 |
+
called at every step.
|
1036 |
+
Returns:
|
1037 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1038 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1039 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1040 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1041 |
+
(nsfw) content, according to the `safety_checker`.
|
1042 |
+
"""
|
1043 |
+
return self.__call__(
|
1044 |
+
prompt=prompt,
|
1045 |
+
negative_prompt=negative_prompt,
|
1046 |
+
image=image,
|
1047 |
+
num_inference_steps=num_inference_steps,
|
1048 |
+
guidance_scale=guidance_scale,
|
1049 |
+
strength=strength,
|
1050 |
+
num_images_per_prompt=num_images_per_prompt,
|
1051 |
+
eta=eta,
|
1052 |
+
generator=generator,
|
1053 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
1054 |
+
output_type=output_type,
|
1055 |
+
return_dict=return_dict,
|
1056 |
+
callback=callback,
|
1057 |
+
is_cancelled_callback=is_cancelled_callback,
|
1058 |
+
callback_steps=callback_steps,
|
1059 |
+
**kwargs,
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
def inpaint(
|
1063 |
+
self,
|
1064 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
1065 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
1066 |
+
prompt: Union[str, List[str]],
|
1067 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1068 |
+
strength: float = 0.8,
|
1069 |
+
num_inference_steps: Optional[int] = 50,
|
1070 |
+
guidance_scale: Optional[float] = 7.5,
|
1071 |
+
num_images_per_prompt: Optional[int] = 1,
|
1072 |
+
eta: Optional[float] = 0.0,
|
1073 |
+
generator: Optional[torch.Generator] = None,
|
1074 |
+
max_embeddings_multiples: Optional[int] = 3,
|
1075 |
+
output_type: Optional[str] = "pil",
|
1076 |
+
return_dict: bool = True,
|
1077 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1078 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
1079 |
+
callback_steps: Optional[int] = 1,
|
1080 |
+
**kwargs,
|
1081 |
+
):
|
1082 |
+
r"""
|
1083 |
+
Function for inpaint.
|
1084 |
+
Args:
|
1085 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
1086 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
1087 |
+
process. This is the image whose masked region will be inpainted.
|
1088 |
+
mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
|
1089 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1090 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
1091 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
1092 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1093 |
+
prompt (`str` or `List[str]`):
|
1094 |
+
The prompt or prompts to guide the image generation.
|
1095 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1096 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
1097 |
+
if `guidance_scale` is less than `1`).
|
1098 |
+
strength (`float`, *optional*, defaults to 0.8):
|
1099 |
+
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
1100 |
+
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
1101 |
+
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
|
1102 |
+
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
1103 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1104 |
+
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1105 |
+
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1106 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1107 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1108 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1109 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1110 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1111 |
+
usually at the expense of lower image quality.
|
1112 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1113 |
+
The number of images to generate per prompt.
|
1114 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1115 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1116 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1117 |
+
generator (`torch.Generator`, *optional*):
|
1118 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
1119 |
+
deterministic.
|
1120 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
1121 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
1122 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1123 |
+
The output format of the generate image. Choose between
|
1124 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1125 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1126 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1127 |
+
plain tuple.
|
1128 |
+
callback (`Callable`, *optional*):
|
1129 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1130 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1131 |
+
is_cancelled_callback (`Callable`, *optional*):
|
1132 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
1133 |
+
`True`, the inference will be cancelled.
|
1134 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1135 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1136 |
+
called at every step.
|
1137 |
+
Returns:
|
1138 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1139 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1140 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1141 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1142 |
+
(nsfw) content, according to the `safety_checker`.
|
1143 |
+
"""
|
1144 |
+
return self.__call__(
|
1145 |
+
prompt=prompt,
|
1146 |
+
negative_prompt=negative_prompt,
|
1147 |
+
image=image,
|
1148 |
+
mask_image=mask_image,
|
1149 |
+
num_inference_steps=num_inference_steps,
|
1150 |
+
guidance_scale=guidance_scale,
|
1151 |
+
strength=strength,
|
1152 |
+
num_images_per_prompt=num_images_per_prompt,
|
1153 |
+
eta=eta,
|
1154 |
+
generator=generator,
|
1155 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
1156 |
+
output_type=output_type,
|
1157 |
+
return_dict=return_dict,
|
1158 |
+
callback=callback,
|
1159 |
+
is_cancelled_callback=is_cancelled_callback,
|
1160 |
+
callback_steps=callback_steps,
|
1161 |
+
**kwargs,
|
1162 |
+
)
|
v0.11.0/lpw_stable_diffusion_onnx.py
ADDED
@@ -0,0 +1,1148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import re
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import diffusers
|
9 |
+
import PIL
|
10 |
+
from diffusers import OnnxStableDiffusionPipeline, SchedulerMixin
|
11 |
+
from diffusers.onnx_utils import OnnxRuntimeModel
|
12 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
13 |
+
from diffusers.utils import deprecate, logging
|
14 |
+
from packaging import version
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
try:
|
19 |
+
from diffusers.onnx_utils import ORT_TO_NP_TYPE
|
20 |
+
except ImportError:
|
21 |
+
ORT_TO_NP_TYPE = {
|
22 |
+
"tensor(bool)": np.bool_,
|
23 |
+
"tensor(int8)": np.int8,
|
24 |
+
"tensor(uint8)": np.uint8,
|
25 |
+
"tensor(int16)": np.int16,
|
26 |
+
"tensor(uint16)": np.uint16,
|
27 |
+
"tensor(int32)": np.int32,
|
28 |
+
"tensor(uint32)": np.uint32,
|
29 |
+
"tensor(int64)": np.int64,
|
30 |
+
"tensor(uint64)": np.uint64,
|
31 |
+
"tensor(float16)": np.float16,
|
32 |
+
"tensor(float)": np.float32,
|
33 |
+
"tensor(double)": np.float64,
|
34 |
+
}
|
35 |
+
|
36 |
+
try:
|
37 |
+
from diffusers.utils import PIL_INTERPOLATION
|
38 |
+
except ImportError:
|
39 |
+
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
40 |
+
PIL_INTERPOLATION = {
|
41 |
+
"linear": PIL.Image.Resampling.BILINEAR,
|
42 |
+
"bilinear": PIL.Image.Resampling.BILINEAR,
|
43 |
+
"bicubic": PIL.Image.Resampling.BICUBIC,
|
44 |
+
"lanczos": PIL.Image.Resampling.LANCZOS,
|
45 |
+
"nearest": PIL.Image.Resampling.NEAREST,
|
46 |
+
}
|
47 |
+
else:
|
48 |
+
PIL_INTERPOLATION = {
|
49 |
+
"linear": PIL.Image.LINEAR,
|
50 |
+
"bilinear": PIL.Image.BILINEAR,
|
51 |
+
"bicubic": PIL.Image.BICUBIC,
|
52 |
+
"lanczos": PIL.Image.LANCZOS,
|
53 |
+
"nearest": PIL.Image.NEAREST,
|
54 |
+
}
|
55 |
+
# ------------------------------------------------------------------------------
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
58 |
+
|
59 |
+
re_attention = re.compile(
|
60 |
+
r"""
|
61 |
+
\\\(|
|
62 |
+
\\\)|
|
63 |
+
\\\[|
|
64 |
+
\\]|
|
65 |
+
\\\\|
|
66 |
+
\\|
|
67 |
+
\(|
|
68 |
+
\[|
|
69 |
+
:([+-]?[.\d]+)\)|
|
70 |
+
\)|
|
71 |
+
]|
|
72 |
+
[^\\()\[\]:]+|
|
73 |
+
:
|
74 |
+
""",
|
75 |
+
re.X,
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def parse_prompt_attention(text):
|
80 |
+
"""
|
81 |
+
Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
|
82 |
+
Accepted tokens are:
|
83 |
+
(abc) - increases attention to abc by a multiplier of 1.1
|
84 |
+
(abc:3.12) - increases attention to abc by a multiplier of 3.12
|
85 |
+
[abc] - decreases attention to abc by a multiplier of 1.1
|
86 |
+
\( - literal character '('
|
87 |
+
\[ - literal character '['
|
88 |
+
\) - literal character ')'
|
89 |
+
\] - literal character ']'
|
90 |
+
\\ - literal character '\'
|
91 |
+
anything else - just text
|
92 |
+
>>> parse_prompt_attention('normal text')
|
93 |
+
[['normal text', 1.0]]
|
94 |
+
>>> parse_prompt_attention('an (important) word')
|
95 |
+
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
|
96 |
+
>>> parse_prompt_attention('(unbalanced')
|
97 |
+
[['unbalanced', 1.1]]
|
98 |
+
>>> parse_prompt_attention('\(literal\]')
|
99 |
+
[['(literal]', 1.0]]
|
100 |
+
>>> parse_prompt_attention('(unnecessary)(parens)')
|
101 |
+
[['unnecessaryparens', 1.1]]
|
102 |
+
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
|
103 |
+
[['a ', 1.0],
|
104 |
+
['house', 1.5730000000000004],
|
105 |
+
[' ', 1.1],
|
106 |
+
['on', 1.0],
|
107 |
+
[' a ', 1.1],
|
108 |
+
['hill', 0.55],
|
109 |
+
[', sun, ', 1.1],
|
110 |
+
['sky', 1.4641000000000006],
|
111 |
+
['.', 1.1]]
|
112 |
+
"""
|
113 |
+
|
114 |
+
res = []
|
115 |
+
round_brackets = []
|
116 |
+
square_brackets = []
|
117 |
+
|
118 |
+
round_bracket_multiplier = 1.1
|
119 |
+
square_bracket_multiplier = 1 / 1.1
|
120 |
+
|
121 |
+
def multiply_range(start_position, multiplier):
|
122 |
+
for p in range(start_position, len(res)):
|
123 |
+
res[p][1] *= multiplier
|
124 |
+
|
125 |
+
for m in re_attention.finditer(text):
|
126 |
+
text = m.group(0)
|
127 |
+
weight = m.group(1)
|
128 |
+
|
129 |
+
if text.startswith("\\"):
|
130 |
+
res.append([text[1:], 1.0])
|
131 |
+
elif text == "(":
|
132 |
+
round_brackets.append(len(res))
|
133 |
+
elif text == "[":
|
134 |
+
square_brackets.append(len(res))
|
135 |
+
elif weight is not None and len(round_brackets) > 0:
|
136 |
+
multiply_range(round_brackets.pop(), float(weight))
|
137 |
+
elif text == ")" and len(round_brackets) > 0:
|
138 |
+
multiply_range(round_brackets.pop(), round_bracket_multiplier)
|
139 |
+
elif text == "]" and len(square_brackets) > 0:
|
140 |
+
multiply_range(square_brackets.pop(), square_bracket_multiplier)
|
141 |
+
else:
|
142 |
+
res.append([text, 1.0])
|
143 |
+
|
144 |
+
for pos in round_brackets:
|
145 |
+
multiply_range(pos, round_bracket_multiplier)
|
146 |
+
|
147 |
+
for pos in square_brackets:
|
148 |
+
multiply_range(pos, square_bracket_multiplier)
|
149 |
+
|
150 |
+
if len(res) == 0:
|
151 |
+
res = [["", 1.0]]
|
152 |
+
|
153 |
+
# merge runs of identical weights
|
154 |
+
i = 0
|
155 |
+
while i + 1 < len(res):
|
156 |
+
if res[i][1] == res[i + 1][1]:
|
157 |
+
res[i][0] += res[i + 1][0]
|
158 |
+
res.pop(i + 1)
|
159 |
+
else:
|
160 |
+
i += 1
|
161 |
+
|
162 |
+
return res
|
163 |
+
|
164 |
+
|
165 |
+
def get_prompts_with_weights(pipe, prompt: List[str], max_length: int):
|
166 |
+
r"""
|
167 |
+
Tokenize a list of prompts and return its tokens with weights of each token.
|
168 |
+
|
169 |
+
No padding, starting or ending token is included.
|
170 |
+
"""
|
171 |
+
tokens = []
|
172 |
+
weights = []
|
173 |
+
truncated = False
|
174 |
+
for text in prompt:
|
175 |
+
texts_and_weights = parse_prompt_attention(text)
|
176 |
+
text_token = []
|
177 |
+
text_weight = []
|
178 |
+
for word, weight in texts_and_weights:
|
179 |
+
# tokenize and discard the starting and the ending token
|
180 |
+
token = pipe.tokenizer(word, return_tensors="np").input_ids[0, 1:-1]
|
181 |
+
text_token += list(token)
|
182 |
+
# copy the weight by length of token
|
183 |
+
text_weight += [weight] * len(token)
|
184 |
+
# stop if the text is too long (longer than truncation limit)
|
185 |
+
if len(text_token) > max_length:
|
186 |
+
truncated = True
|
187 |
+
break
|
188 |
+
# truncate
|
189 |
+
if len(text_token) > max_length:
|
190 |
+
truncated = True
|
191 |
+
text_token = text_token[:max_length]
|
192 |
+
text_weight = text_weight[:max_length]
|
193 |
+
tokens.append(text_token)
|
194 |
+
weights.append(text_weight)
|
195 |
+
if truncated:
|
196 |
+
logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
|
197 |
+
return tokens, weights
|
198 |
+
|
199 |
+
|
200 |
+
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
|
201 |
+
r"""
|
202 |
+
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
|
203 |
+
"""
|
204 |
+
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
|
205 |
+
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
|
206 |
+
for i in range(len(tokens)):
|
207 |
+
tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
|
208 |
+
if no_boseos_middle:
|
209 |
+
weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
|
210 |
+
else:
|
211 |
+
w = []
|
212 |
+
if len(weights[i]) == 0:
|
213 |
+
w = [1.0] * weights_length
|
214 |
+
else:
|
215 |
+
for j in range(max_embeddings_multiples):
|
216 |
+
w.append(1.0) # weight for starting token in this chunk
|
217 |
+
w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
|
218 |
+
w.append(1.0) # weight for ending token in this chunk
|
219 |
+
w += [1.0] * (weights_length - len(w))
|
220 |
+
weights[i] = w[:]
|
221 |
+
|
222 |
+
return tokens, weights
|
223 |
+
|
224 |
+
|
225 |
+
def get_unweighted_text_embeddings(
|
226 |
+
pipe,
|
227 |
+
text_input: np.array,
|
228 |
+
chunk_length: int,
|
229 |
+
no_boseos_middle: Optional[bool] = True,
|
230 |
+
):
|
231 |
+
"""
|
232 |
+
When the length of tokens is a multiple of the capacity of the text encoder,
|
233 |
+
it should be split into chunks and sent to the text encoder individually.
|
234 |
+
"""
|
235 |
+
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
|
236 |
+
if max_embeddings_multiples > 1:
|
237 |
+
text_embeddings = []
|
238 |
+
for i in range(max_embeddings_multiples):
|
239 |
+
# extract the i-th chunk
|
240 |
+
text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].copy()
|
241 |
+
|
242 |
+
# cover the head and the tail by the starting and the ending tokens
|
243 |
+
text_input_chunk[:, 0] = text_input[0, 0]
|
244 |
+
text_input_chunk[:, -1] = text_input[0, -1]
|
245 |
+
|
246 |
+
text_embedding = pipe.text_encoder(input_ids=text_input_chunk)[0]
|
247 |
+
|
248 |
+
if no_boseos_middle:
|
249 |
+
if i == 0:
|
250 |
+
# discard the ending token
|
251 |
+
text_embedding = text_embedding[:, :-1]
|
252 |
+
elif i == max_embeddings_multiples - 1:
|
253 |
+
# discard the starting token
|
254 |
+
text_embedding = text_embedding[:, 1:]
|
255 |
+
else:
|
256 |
+
# discard both starting and ending tokens
|
257 |
+
text_embedding = text_embedding[:, 1:-1]
|
258 |
+
|
259 |
+
text_embeddings.append(text_embedding)
|
260 |
+
text_embeddings = np.concatenate(text_embeddings, axis=1)
|
261 |
+
else:
|
262 |
+
text_embeddings = pipe.text_encoder(input_ids=text_input)[0]
|
263 |
+
return text_embeddings
|
264 |
+
|
265 |
+
|
266 |
+
def get_weighted_text_embeddings(
|
267 |
+
pipe,
|
268 |
+
prompt: Union[str, List[str]],
|
269 |
+
uncond_prompt: Optional[Union[str, List[str]]] = None,
|
270 |
+
max_embeddings_multiples: Optional[int] = 4,
|
271 |
+
no_boseos_middle: Optional[bool] = False,
|
272 |
+
skip_parsing: Optional[bool] = False,
|
273 |
+
skip_weighting: Optional[bool] = False,
|
274 |
+
**kwargs,
|
275 |
+
):
|
276 |
+
r"""
|
277 |
+
Prompts can be assigned with local weights using brackets. For example,
|
278 |
+
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
|
279 |
+
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
|
280 |
+
|
281 |
+
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
|
282 |
+
|
283 |
+
Args:
|
284 |
+
pipe (`OnnxStableDiffusionPipeline`):
|
285 |
+
Pipe to provide access to the tokenizer and the text encoder.
|
286 |
+
prompt (`str` or `List[str]`):
|
287 |
+
The prompt or prompts to guide the image generation.
|
288 |
+
uncond_prompt (`str` or `List[str]`):
|
289 |
+
The unconditional prompt or prompts for guide the image generation. If unconditional prompt
|
290 |
+
is provided, the embeddings of prompt and uncond_prompt are concatenated.
|
291 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `1`):
|
292 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
293 |
+
no_boseos_middle (`bool`, *optional*, defaults to `False`):
|
294 |
+
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
|
295 |
+
ending token in each of the chunk in the middle.
|
296 |
+
skip_parsing (`bool`, *optional*, defaults to `False`):
|
297 |
+
Skip the parsing of brackets.
|
298 |
+
skip_weighting (`bool`, *optional*, defaults to `False`):
|
299 |
+
Skip the weighting. When the parsing is skipped, it is forced True.
|
300 |
+
"""
|
301 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
302 |
+
if isinstance(prompt, str):
|
303 |
+
prompt = [prompt]
|
304 |
+
|
305 |
+
if not skip_parsing:
|
306 |
+
prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
|
307 |
+
if uncond_prompt is not None:
|
308 |
+
if isinstance(uncond_prompt, str):
|
309 |
+
uncond_prompt = [uncond_prompt]
|
310 |
+
uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
|
311 |
+
else:
|
312 |
+
prompt_tokens = [
|
313 |
+
token[1:-1]
|
314 |
+
for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True, return_tensors="np").input_ids
|
315 |
+
]
|
316 |
+
prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
|
317 |
+
if uncond_prompt is not None:
|
318 |
+
if isinstance(uncond_prompt, str):
|
319 |
+
uncond_prompt = [uncond_prompt]
|
320 |
+
uncond_tokens = [
|
321 |
+
token[1:-1]
|
322 |
+
for token in pipe.tokenizer(
|
323 |
+
uncond_prompt,
|
324 |
+
max_length=max_length,
|
325 |
+
truncation=True,
|
326 |
+
return_tensors="np",
|
327 |
+
).input_ids
|
328 |
+
]
|
329 |
+
uncond_weights = [[1.0] * len(token) for token in uncond_tokens]
|
330 |
+
|
331 |
+
# round up the longest length of tokens to a multiple of (model_max_length - 2)
|
332 |
+
max_length = max([len(token) for token in prompt_tokens])
|
333 |
+
if uncond_prompt is not None:
|
334 |
+
max_length = max(max_length, max([len(token) for token in uncond_tokens]))
|
335 |
+
|
336 |
+
max_embeddings_multiples = min(
|
337 |
+
max_embeddings_multiples,
|
338 |
+
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
|
339 |
+
)
|
340 |
+
max_embeddings_multiples = max(1, max_embeddings_multiples)
|
341 |
+
max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
|
342 |
+
|
343 |
+
# pad the length of tokens and weights
|
344 |
+
bos = pipe.tokenizer.bos_token_id
|
345 |
+
eos = pipe.tokenizer.eos_token_id
|
346 |
+
prompt_tokens, prompt_weights = pad_tokens_and_weights(
|
347 |
+
prompt_tokens,
|
348 |
+
prompt_weights,
|
349 |
+
max_length,
|
350 |
+
bos,
|
351 |
+
eos,
|
352 |
+
no_boseos_middle=no_boseos_middle,
|
353 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
354 |
+
)
|
355 |
+
prompt_tokens = np.array(prompt_tokens, dtype=np.int32)
|
356 |
+
if uncond_prompt is not None:
|
357 |
+
uncond_tokens, uncond_weights = pad_tokens_and_weights(
|
358 |
+
uncond_tokens,
|
359 |
+
uncond_weights,
|
360 |
+
max_length,
|
361 |
+
bos,
|
362 |
+
eos,
|
363 |
+
no_boseos_middle=no_boseos_middle,
|
364 |
+
chunk_length=pipe.tokenizer.model_max_length,
|
365 |
+
)
|
366 |
+
uncond_tokens = np.array(uncond_tokens, dtype=np.int32)
|
367 |
+
|
368 |
+
# get the embeddings
|
369 |
+
text_embeddings = get_unweighted_text_embeddings(
|
370 |
+
pipe,
|
371 |
+
prompt_tokens,
|
372 |
+
pipe.tokenizer.model_max_length,
|
373 |
+
no_boseos_middle=no_boseos_middle,
|
374 |
+
)
|
375 |
+
prompt_weights = np.array(prompt_weights, dtype=text_embeddings.dtype)
|
376 |
+
if uncond_prompt is not None:
|
377 |
+
uncond_embeddings = get_unweighted_text_embeddings(
|
378 |
+
pipe,
|
379 |
+
uncond_tokens,
|
380 |
+
pipe.tokenizer.model_max_length,
|
381 |
+
no_boseos_middle=no_boseos_middle,
|
382 |
+
)
|
383 |
+
uncond_weights = np.array(uncond_weights, dtype=uncond_embeddings.dtype)
|
384 |
+
|
385 |
+
# assign weights to the prompts and normalize in the sense of mean
|
386 |
+
# TODO: should we normalize by chunk or in a whole (current implementation)?
|
387 |
+
if (not skip_parsing) and (not skip_weighting):
|
388 |
+
previous_mean = text_embeddings.mean(axis=(-2, -1))
|
389 |
+
text_embeddings *= prompt_weights[:, :, None]
|
390 |
+
text_embeddings *= (previous_mean / text_embeddings.mean(axis=(-2, -1)))[:, None, None]
|
391 |
+
if uncond_prompt is not None:
|
392 |
+
previous_mean = uncond_embeddings.mean(axis=(-2, -1))
|
393 |
+
uncond_embeddings *= uncond_weights[:, :, None]
|
394 |
+
uncond_embeddings *= (previous_mean / uncond_embeddings.mean(axis=(-2, -1)))[:, None, None]
|
395 |
+
|
396 |
+
# For classifier free guidance, we need to do two forward passes.
|
397 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
398 |
+
# to avoid doing two forward passes
|
399 |
+
if uncond_prompt is not None:
|
400 |
+
return text_embeddings, uncond_embeddings
|
401 |
+
|
402 |
+
return text_embeddings
|
403 |
+
|
404 |
+
|
405 |
+
def preprocess_image(image):
|
406 |
+
w, h = image.size
|
407 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
408 |
+
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
409 |
+
image = np.array(image).astype(np.float32) / 255.0
|
410 |
+
image = image[None].transpose(0, 3, 1, 2)
|
411 |
+
return 2.0 * image - 1.0
|
412 |
+
|
413 |
+
|
414 |
+
def preprocess_mask(mask, scale_factor=8):
|
415 |
+
mask = mask.convert("L")
|
416 |
+
w, h = mask.size
|
417 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
418 |
+
mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
|
419 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
420 |
+
mask = np.tile(mask, (4, 1, 1))
|
421 |
+
mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
|
422 |
+
mask = 1 - mask # repaint white, keep black
|
423 |
+
return mask
|
424 |
+
|
425 |
+
|
426 |
+
class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline):
|
427 |
+
r"""
|
428 |
+
Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
|
429 |
+
weighting in prompt.
|
430 |
+
|
431 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
432 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
433 |
+
"""
|
434 |
+
if version.parse(version.parse(diffusers.__version__).base_version) >= version.parse("0.9.0"):
|
435 |
+
|
436 |
+
def __init__(
|
437 |
+
self,
|
438 |
+
vae_encoder: OnnxRuntimeModel,
|
439 |
+
vae_decoder: OnnxRuntimeModel,
|
440 |
+
text_encoder: OnnxRuntimeModel,
|
441 |
+
tokenizer: CLIPTokenizer,
|
442 |
+
unet: OnnxRuntimeModel,
|
443 |
+
scheduler: SchedulerMixin,
|
444 |
+
safety_checker: OnnxRuntimeModel,
|
445 |
+
feature_extractor: CLIPFeatureExtractor,
|
446 |
+
requires_safety_checker: bool = True,
|
447 |
+
):
|
448 |
+
super().__init__(
|
449 |
+
vae_encoder=vae_encoder,
|
450 |
+
vae_decoder=vae_decoder,
|
451 |
+
text_encoder=text_encoder,
|
452 |
+
tokenizer=tokenizer,
|
453 |
+
unet=unet,
|
454 |
+
scheduler=scheduler,
|
455 |
+
safety_checker=safety_checker,
|
456 |
+
feature_extractor=feature_extractor,
|
457 |
+
requires_safety_checker=requires_safety_checker,
|
458 |
+
)
|
459 |
+
self.__init__additional__()
|
460 |
+
|
461 |
+
else:
|
462 |
+
|
463 |
+
def __init__(
|
464 |
+
self,
|
465 |
+
vae_encoder: OnnxRuntimeModel,
|
466 |
+
vae_decoder: OnnxRuntimeModel,
|
467 |
+
text_encoder: OnnxRuntimeModel,
|
468 |
+
tokenizer: CLIPTokenizer,
|
469 |
+
unet: OnnxRuntimeModel,
|
470 |
+
scheduler: SchedulerMixin,
|
471 |
+
safety_checker: OnnxRuntimeModel,
|
472 |
+
feature_extractor: CLIPFeatureExtractor,
|
473 |
+
):
|
474 |
+
super().__init__(
|
475 |
+
vae_encoder=vae_encoder,
|
476 |
+
vae_decoder=vae_decoder,
|
477 |
+
text_encoder=text_encoder,
|
478 |
+
tokenizer=tokenizer,
|
479 |
+
unet=unet,
|
480 |
+
scheduler=scheduler,
|
481 |
+
safety_checker=safety_checker,
|
482 |
+
feature_extractor=feature_extractor,
|
483 |
+
)
|
484 |
+
self.__init__additional__()
|
485 |
+
|
486 |
+
def __init__additional__(self):
|
487 |
+
self.unet_in_channels = 4
|
488 |
+
self.vae_scale_factor = 8
|
489 |
+
|
490 |
+
def _encode_prompt(
|
491 |
+
self,
|
492 |
+
prompt,
|
493 |
+
num_images_per_prompt,
|
494 |
+
do_classifier_free_guidance,
|
495 |
+
negative_prompt,
|
496 |
+
max_embeddings_multiples,
|
497 |
+
):
|
498 |
+
r"""
|
499 |
+
Encodes the prompt into text encoder hidden states.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
prompt (`str` or `list(int)`):
|
503 |
+
prompt to be encoded
|
504 |
+
num_images_per_prompt (`int`):
|
505 |
+
number of images that should be generated per prompt
|
506 |
+
do_classifier_free_guidance (`bool`):
|
507 |
+
whether to use classifier free guidance or not
|
508 |
+
negative_prompt (`str` or `List[str]`):
|
509 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
510 |
+
if `guidance_scale` is less than `1`).
|
511 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
512 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
513 |
+
"""
|
514 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
515 |
+
|
516 |
+
if negative_prompt is None:
|
517 |
+
negative_prompt = [""] * batch_size
|
518 |
+
elif isinstance(negative_prompt, str):
|
519 |
+
negative_prompt = [negative_prompt] * batch_size
|
520 |
+
if batch_size != len(negative_prompt):
|
521 |
+
raise ValueError(
|
522 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
523 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
524 |
+
" the batch size of `prompt`."
|
525 |
+
)
|
526 |
+
|
527 |
+
text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
|
528 |
+
pipe=self,
|
529 |
+
prompt=prompt,
|
530 |
+
uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
|
531 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
532 |
+
)
|
533 |
+
|
534 |
+
text_embeddings = text_embeddings.repeat(num_images_per_prompt, 0)
|
535 |
+
if do_classifier_free_guidance:
|
536 |
+
uncond_embeddings = uncond_embeddings.repeat(num_images_per_prompt, 0)
|
537 |
+
text_embeddings = np.concatenate([uncond_embeddings, text_embeddings])
|
538 |
+
|
539 |
+
return text_embeddings
|
540 |
+
|
541 |
+
def check_inputs(self, prompt, height, width, strength, callback_steps):
|
542 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
543 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
544 |
+
|
545 |
+
if strength < 0 or strength > 1:
|
546 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
547 |
+
|
548 |
+
if height % 8 != 0 or width % 8 != 0:
|
549 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
550 |
+
|
551 |
+
if (callback_steps is None) or (
|
552 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
553 |
+
):
|
554 |
+
raise ValueError(
|
555 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
556 |
+
f" {type(callback_steps)}."
|
557 |
+
)
|
558 |
+
|
559 |
+
def get_timesteps(self, num_inference_steps, strength, is_text2img):
|
560 |
+
if is_text2img:
|
561 |
+
return self.scheduler.timesteps, num_inference_steps
|
562 |
+
else:
|
563 |
+
# get the original timestep using init_timestep
|
564 |
+
offset = self.scheduler.config.get("steps_offset", 0)
|
565 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
566 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
567 |
+
|
568 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
569 |
+
timesteps = self.scheduler.timesteps[t_start:]
|
570 |
+
return timesteps, num_inference_steps - t_start
|
571 |
+
|
572 |
+
def run_safety_checker(self, image):
|
573 |
+
if self.safety_checker is not None:
|
574 |
+
safety_checker_input = self.feature_extractor(
|
575 |
+
self.numpy_to_pil(image), return_tensors="np"
|
576 |
+
).pixel_values.astype(image.dtype)
|
577 |
+
# There will throw an error if use safety_checker directly and batchsize>1
|
578 |
+
images, has_nsfw_concept = [], []
|
579 |
+
for i in range(image.shape[0]):
|
580 |
+
image_i, has_nsfw_concept_i = self.safety_checker(
|
581 |
+
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1]
|
582 |
+
)
|
583 |
+
images.append(image_i)
|
584 |
+
has_nsfw_concept.append(has_nsfw_concept_i[0])
|
585 |
+
image = np.concatenate(images)
|
586 |
+
else:
|
587 |
+
has_nsfw_concept = None
|
588 |
+
return image, has_nsfw_concept
|
589 |
+
|
590 |
+
def decode_latents(self, latents):
|
591 |
+
latents = 1 / 0.18215 * latents
|
592 |
+
# image = self.vae_decoder(latent_sample=latents)[0]
|
593 |
+
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
594 |
+
image = np.concatenate(
|
595 |
+
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])]
|
596 |
+
)
|
597 |
+
image = np.clip(image / 2 + 0.5, 0, 1)
|
598 |
+
image = image.transpose((0, 2, 3, 1))
|
599 |
+
return image
|
600 |
+
|
601 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
602 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
603 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
604 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
605 |
+
# and should be between [0, 1]
|
606 |
+
|
607 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
608 |
+
extra_step_kwargs = {}
|
609 |
+
if accepts_eta:
|
610 |
+
extra_step_kwargs["eta"] = eta
|
611 |
+
|
612 |
+
# check if the scheduler accepts generator
|
613 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
614 |
+
if accepts_generator:
|
615 |
+
extra_step_kwargs["generator"] = generator
|
616 |
+
return extra_step_kwargs
|
617 |
+
|
618 |
+
def prepare_latents(self, image, timestep, batch_size, height, width, dtype, generator, latents=None):
|
619 |
+
if image is None:
|
620 |
+
shape = (
|
621 |
+
batch_size,
|
622 |
+
self.unet_in_channels,
|
623 |
+
height // self.vae_scale_factor,
|
624 |
+
width // self.vae_scale_factor,
|
625 |
+
)
|
626 |
+
|
627 |
+
if latents is None:
|
628 |
+
latents = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
|
629 |
+
else:
|
630 |
+
if latents.shape != shape:
|
631 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
632 |
+
|
633 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
634 |
+
latents = (torch.from_numpy(latents) * self.scheduler.init_noise_sigma).numpy()
|
635 |
+
return latents, None, None
|
636 |
+
else:
|
637 |
+
init_latents = self.vae_encoder(sample=image)[0]
|
638 |
+
init_latents = 0.18215 * init_latents
|
639 |
+
init_latents = np.concatenate([init_latents] * batch_size, axis=0)
|
640 |
+
init_latents_orig = init_latents
|
641 |
+
shape = init_latents.shape
|
642 |
+
|
643 |
+
# add noise to latents using the timesteps
|
644 |
+
noise = torch.randn(shape, generator=generator, device="cpu").numpy().astype(dtype)
|
645 |
+
latents = self.scheduler.add_noise(
|
646 |
+
torch.from_numpy(init_latents), torch.from_numpy(noise), timestep
|
647 |
+
).numpy()
|
648 |
+
return latents, init_latents_orig, noise
|
649 |
+
|
650 |
+
@torch.no_grad()
|
651 |
+
def __call__(
|
652 |
+
self,
|
653 |
+
prompt: Union[str, List[str]],
|
654 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
655 |
+
image: Union[np.ndarray, PIL.Image.Image] = None,
|
656 |
+
mask_image: Union[np.ndarray, PIL.Image.Image] = None,
|
657 |
+
height: int = 512,
|
658 |
+
width: int = 512,
|
659 |
+
num_inference_steps: int = 50,
|
660 |
+
guidance_scale: float = 7.5,
|
661 |
+
strength: float = 0.8,
|
662 |
+
num_images_per_prompt: Optional[int] = 1,
|
663 |
+
eta: float = 0.0,
|
664 |
+
generator: Optional[torch.Generator] = None,
|
665 |
+
latents: Optional[np.ndarray] = None,
|
666 |
+
max_embeddings_multiples: Optional[int] = 3,
|
667 |
+
output_type: Optional[str] = "pil",
|
668 |
+
return_dict: bool = True,
|
669 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
670 |
+
is_cancelled_callback: Optional[Callable[[], bool]] = None,
|
671 |
+
callback_steps: Optional[int] = 1,
|
672 |
+
**kwargs,
|
673 |
+
):
|
674 |
+
r"""
|
675 |
+
Function invoked when calling the pipeline for generation.
|
676 |
+
|
677 |
+
Args:
|
678 |
+
prompt (`str` or `List[str]`):
|
679 |
+
The prompt or prompts to guide the image generation.
|
680 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
681 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
682 |
+
if `guidance_scale` is less than `1`).
|
683 |
+
image (`np.ndarray` or `PIL.Image.Image`):
|
684 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
685 |
+
process.
|
686 |
+
mask_image (`np.ndarray` or `PIL.Image.Image`):
|
687 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
688 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
689 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
690 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
691 |
+
height (`int`, *optional*, defaults to 512):
|
692 |
+
The height in pixels of the generated image.
|
693 |
+
width (`int`, *optional*, defaults to 512):
|
694 |
+
The width in pixels of the generated image.
|
695 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
696 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
697 |
+
expense of slower inference.
|
698 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
699 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
700 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
701 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
702 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
703 |
+
usually at the expense of lower image quality.
|
704 |
+
strength (`float`, *optional*, defaults to 0.8):
|
705 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
706 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
707 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
708 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
709 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
710 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
711 |
+
The number of images to generate per prompt.
|
712 |
+
eta (`float`, *optional*, defaults to 0.0):
|
713 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
714 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
715 |
+
generator (`torch.Generator`, *optional*):
|
716 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
717 |
+
deterministic.
|
718 |
+
latents (`np.ndarray`, *optional*):
|
719 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
720 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
721 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
722 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
723 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
724 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
725 |
+
The output format of the generate image. Choose between
|
726 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
727 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
728 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
729 |
+
plain tuple.
|
730 |
+
callback (`Callable`, *optional*):
|
731 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
732 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
733 |
+
is_cancelled_callback (`Callable`, *optional*):
|
734 |
+
A function that will be called every `callback_steps` steps during inference. If the function returns
|
735 |
+
`True`, the inference will be cancelled.
|
736 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
737 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
738 |
+
called at every step.
|
739 |
+
|
740 |
+
Returns:
|
741 |
+
`None` if cancelled by `is_cancelled_callback`,
|
742 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
743 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
744 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
745 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
746 |
+
(nsfw) content, according to the `safety_checker`.
|
747 |
+
"""
|
748 |
+
message = "Please use `image` instead of `init_image`."
|
749 |
+
init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
|
750 |
+
image = init_image or image
|
751 |
+
|
752 |
+
# 0. Default height and width to unet
|
753 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
754 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
755 |
+
|
756 |
+
# 1. Check inputs. Raise error if not correct
|
757 |
+
self.check_inputs(prompt, height, width, strength, callback_steps)
|
758 |
+
|
759 |
+
# 2. Define call parameters
|
760 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
761 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
762 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
763 |
+
# corresponds to doing no classifier free guidance.
|
764 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
765 |
+
|
766 |
+
# 3. Encode input prompt
|
767 |
+
text_embeddings = self._encode_prompt(
|
768 |
+
prompt,
|
769 |
+
num_images_per_prompt,
|
770 |
+
do_classifier_free_guidance,
|
771 |
+
negative_prompt,
|
772 |
+
max_embeddings_multiples,
|
773 |
+
)
|
774 |
+
dtype = text_embeddings.dtype
|
775 |
+
|
776 |
+
# 4. Preprocess image and mask
|
777 |
+
if isinstance(image, PIL.Image.Image):
|
778 |
+
image = preprocess_image(image)
|
779 |
+
if image is not None:
|
780 |
+
image = image.astype(dtype)
|
781 |
+
if isinstance(mask_image, PIL.Image.Image):
|
782 |
+
mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
|
783 |
+
if mask_image is not None:
|
784 |
+
mask = mask_image.astype(dtype)
|
785 |
+
mask = np.concatenate([mask] * batch_size * num_images_per_prompt)
|
786 |
+
else:
|
787 |
+
mask = None
|
788 |
+
|
789 |
+
# 5. set timesteps
|
790 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
791 |
+
timestep_dtype = next(
|
792 |
+
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)"
|
793 |
+
)
|
794 |
+
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
|
795 |
+
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, image is None)
|
796 |
+
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
797 |
+
|
798 |
+
# 6. Prepare latent variables
|
799 |
+
latents, init_latents_orig, noise = self.prepare_latents(
|
800 |
+
image,
|
801 |
+
latent_timestep,
|
802 |
+
batch_size * num_images_per_prompt,
|
803 |
+
height,
|
804 |
+
width,
|
805 |
+
dtype,
|
806 |
+
generator,
|
807 |
+
latents,
|
808 |
+
)
|
809 |
+
|
810 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
811 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
812 |
+
|
813 |
+
# 8. Denoising loop
|
814 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
815 |
+
# expand the latents if we are doing classifier free guidance
|
816 |
+
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
|
817 |
+
latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t)
|
818 |
+
latent_model_input = latent_model_input.numpy()
|
819 |
+
|
820 |
+
# predict the noise residual
|
821 |
+
noise_pred = self.unet(
|
822 |
+
sample=latent_model_input,
|
823 |
+
timestep=np.array([t], dtype=timestep_dtype),
|
824 |
+
encoder_hidden_states=text_embeddings,
|
825 |
+
)
|
826 |
+
noise_pred = noise_pred[0]
|
827 |
+
|
828 |
+
# perform guidance
|
829 |
+
if do_classifier_free_guidance:
|
830 |
+
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2)
|
831 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
832 |
+
|
833 |
+
# compute the previous noisy sample x_t -> x_t-1
|
834 |
+
scheduler_output = self.scheduler.step(
|
835 |
+
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs
|
836 |
+
)
|
837 |
+
latents = scheduler_output.prev_sample.numpy()
|
838 |
+
|
839 |
+
if mask is not None:
|
840 |
+
# masking
|
841 |
+
init_latents_proper = self.scheduler.add_noise(
|
842 |
+
torch.from_numpy(init_latents_orig),
|
843 |
+
torch.from_numpy(noise),
|
844 |
+
t,
|
845 |
+
).numpy()
|
846 |
+
latents = (init_latents_proper * mask) + (latents * (1 - mask))
|
847 |
+
|
848 |
+
# call the callback, if provided
|
849 |
+
if i % callback_steps == 0:
|
850 |
+
if callback is not None:
|
851 |
+
callback(i, t, latents)
|
852 |
+
if is_cancelled_callback is not None and is_cancelled_callback():
|
853 |
+
return None
|
854 |
+
|
855 |
+
# 9. Post-processing
|
856 |
+
image = self.decode_latents(latents)
|
857 |
+
|
858 |
+
# 10. Run safety checker
|
859 |
+
image, has_nsfw_concept = self.run_safety_checker(image)
|
860 |
+
|
861 |
+
# 11. Convert to PIL
|
862 |
+
if output_type == "pil":
|
863 |
+
image = self.numpy_to_pil(image)
|
864 |
+
|
865 |
+
if not return_dict:
|
866 |
+
return image, has_nsfw_concept
|
867 |
+
|
868 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
869 |
+
|
870 |
+
def text2img(
|
871 |
+
self,
|
872 |
+
prompt: Union[str, List[str]],
|
873 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
874 |
+
height: int = 512,
|
875 |
+
width: int = 512,
|
876 |
+
num_inference_steps: int = 50,
|
877 |
+
guidance_scale: float = 7.5,
|
878 |
+
num_images_per_prompt: Optional[int] = 1,
|
879 |
+
eta: float = 0.0,
|
880 |
+
generator: Optional[torch.Generator] = None,
|
881 |
+
latents: Optional[np.ndarray] = None,
|
882 |
+
max_embeddings_multiples: Optional[int] = 3,
|
883 |
+
output_type: Optional[str] = "pil",
|
884 |
+
return_dict: bool = True,
|
885 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
886 |
+
callback_steps: Optional[int] = 1,
|
887 |
+
**kwargs,
|
888 |
+
):
|
889 |
+
r"""
|
890 |
+
Function for text-to-image generation.
|
891 |
+
Args:
|
892 |
+
prompt (`str` or `List[str]`):
|
893 |
+
The prompt or prompts to guide the image generation.
|
894 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
895 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
896 |
+
if `guidance_scale` is less than `1`).
|
897 |
+
height (`int`, *optional*, defaults to 512):
|
898 |
+
The height in pixels of the generated image.
|
899 |
+
width (`int`, *optional*, defaults to 512):
|
900 |
+
The width in pixels of the generated image.
|
901 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
902 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
903 |
+
expense of slower inference.
|
904 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
905 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
906 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
907 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
908 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
909 |
+
usually at the expense of lower image quality.
|
910 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
911 |
+
The number of images to generate per prompt.
|
912 |
+
eta (`float`, *optional*, defaults to 0.0):
|
913 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
914 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
915 |
+
generator (`torch.Generator`, *optional*):
|
916 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
917 |
+
deterministic.
|
918 |
+
latents (`np.ndarray`, *optional*):
|
919 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
920 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
921 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
922 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
923 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
924 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
925 |
+
The output format of the generate image. Choose between
|
926 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
927 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
928 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
929 |
+
plain tuple.
|
930 |
+
callback (`Callable`, *optional*):
|
931 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
932 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
933 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
934 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
935 |
+
called at every step.
|
936 |
+
Returns:
|
937 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
938 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
939 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
940 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
941 |
+
(nsfw) content, according to the `safety_checker`.
|
942 |
+
"""
|
943 |
+
return self.__call__(
|
944 |
+
prompt=prompt,
|
945 |
+
negative_prompt=negative_prompt,
|
946 |
+
height=height,
|
947 |
+
width=width,
|
948 |
+
num_inference_steps=num_inference_steps,
|
949 |
+
guidance_scale=guidance_scale,
|
950 |
+
num_images_per_prompt=num_images_per_prompt,
|
951 |
+
eta=eta,
|
952 |
+
generator=generator,
|
953 |
+
latents=latents,
|
954 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
955 |
+
output_type=output_type,
|
956 |
+
return_dict=return_dict,
|
957 |
+
callback=callback,
|
958 |
+
callback_steps=callback_steps,
|
959 |
+
**kwargs,
|
960 |
+
)
|
961 |
+
|
962 |
+
def img2img(
|
963 |
+
self,
|
964 |
+
image: Union[np.ndarray, PIL.Image.Image],
|
965 |
+
prompt: Union[str, List[str]],
|
966 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
967 |
+
strength: float = 0.8,
|
968 |
+
num_inference_steps: Optional[int] = 50,
|
969 |
+
guidance_scale: Optional[float] = 7.5,
|
970 |
+
num_images_per_prompt: Optional[int] = 1,
|
971 |
+
eta: Optional[float] = 0.0,
|
972 |
+
generator: Optional[torch.Generator] = None,
|
973 |
+
max_embeddings_multiples: Optional[int] = 3,
|
974 |
+
output_type: Optional[str] = "pil",
|
975 |
+
return_dict: bool = True,
|
976 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
977 |
+
callback_steps: Optional[int] = 1,
|
978 |
+
**kwargs,
|
979 |
+
):
|
980 |
+
r"""
|
981 |
+
Function for image-to-image generation.
|
982 |
+
Args:
|
983 |
+
image (`np.ndarray` or `PIL.Image.Image`):
|
984 |
+
`Image`, or ndarray representing an image batch, that will be used as the starting point for the
|
985 |
+
process.
|
986 |
+
prompt (`str` or `List[str]`):
|
987 |
+
The prompt or prompts to guide the image generation.
|
988 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
989 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
990 |
+
if `guidance_scale` is less than `1`).
|
991 |
+
strength (`float`, *optional*, defaults to 0.8):
|
992 |
+
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
|
993 |
+
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The
|
994 |
+
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
|
995 |
+
noise will be maximum and the denoising process will run for the full number of iterations specified in
|
996 |
+
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
|
997 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
998 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
999 |
+
expense of slower inference. This parameter will be modulated by `strength`.
|
1000 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1001 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1002 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1003 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1004 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1005 |
+
usually at the expense of lower image quality.
|
1006 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1007 |
+
The number of images to generate per prompt.
|
1008 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1009 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1010 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1011 |
+
generator (`torch.Generator`, *optional*):
|
1012 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
1013 |
+
deterministic.
|
1014 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
1015 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
1016 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1017 |
+
The output format of the generate image. Choose between
|
1018 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1019 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1020 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1021 |
+
plain tuple.
|
1022 |
+
callback (`Callable`, *optional*):
|
1023 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1024 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
1025 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1026 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1027 |
+
called at every step.
|
1028 |
+
Returns:
|
1029 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1030 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1031 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1032 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1033 |
+
(nsfw) content, according to the `safety_checker`.
|
1034 |
+
"""
|
1035 |
+
return self.__call__(
|
1036 |
+
prompt=prompt,
|
1037 |
+
negative_prompt=negative_prompt,
|
1038 |
+
image=image,
|
1039 |
+
num_inference_steps=num_inference_steps,
|
1040 |
+
guidance_scale=guidance_scale,
|
1041 |
+
strength=strength,
|
1042 |
+
num_images_per_prompt=num_images_per_prompt,
|
1043 |
+
eta=eta,
|
1044 |
+
generator=generator,
|
1045 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
1046 |
+
output_type=output_type,
|
1047 |
+
return_dict=return_dict,
|
1048 |
+
callback=callback,
|
1049 |
+
callback_steps=callback_steps,
|
1050 |
+
**kwargs,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
def inpaint(
|
1054 |
+
self,
|
1055 |
+
image: Union[np.ndarray, PIL.Image.Image],
|
1056 |
+
mask_image: Union[np.ndarray, PIL.Image.Image],
|
1057 |
+
prompt: Union[str, List[str]],
|
1058 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1059 |
+
strength: float = 0.8,
|
1060 |
+
num_inference_steps: Optional[int] = 50,
|
1061 |
+
guidance_scale: Optional[float] = 7.5,
|
1062 |
+
num_images_per_prompt: Optional[int] = 1,
|
1063 |
+
eta: Optional[float] = 0.0,
|
1064 |
+
generator: Optional[torch.Generator] = None,
|
1065 |
+
max_embeddings_multiples: Optional[int] = 3,
|
1066 |
+
output_type: Optional[str] = "pil",
|
1067 |
+
return_dict: bool = True,
|
1068 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
1069 |
+
callback_steps: Optional[int] = 1,
|
1070 |
+
**kwargs,
|
1071 |
+
):
|
1072 |
+
r"""
|
1073 |
+
Function for inpaint.
|
1074 |
+
Args:
|
1075 |
+
image (`np.ndarray` or `PIL.Image.Image`):
|
1076 |
+
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
1077 |
+
process. This is the image whose masked region will be inpainted.
|
1078 |
+
mask_image (`np.ndarray` or `PIL.Image.Image`):
|
1079 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
1080 |
+
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
|
1081 |
+
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
|
1082 |
+
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
1083 |
+
prompt (`str` or `List[str]`):
|
1084 |
+
The prompt or prompts to guide the image generation.
|
1085 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1086 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
1087 |
+
if `guidance_scale` is less than `1`).
|
1088 |
+
strength (`float`, *optional*, defaults to 0.8):
|
1089 |
+
Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
|
1090 |
+
is 1, the denoising process will be run on the masked area for the full number of iterations specified
|
1091 |
+
in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
|
1092 |
+
noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
|
1093 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1094 |
+
The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
|
1095 |
+
the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
|
1096 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1097 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1098 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1099 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1100 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1101 |
+
usually at the expense of lower image quality.
|
1102 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1103 |
+
The number of images to generate per prompt.
|
1104 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1105 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1106 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1107 |
+
generator (`torch.Generator`, *optional*):
|
1108 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
1109 |
+
deterministic.
|
1110 |
+
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
|
1111 |
+
The max multiple length of prompt embeddings compared to the max output length of text encoder.
|
1112 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
1113 |
+
The output format of the generate image. Choose between
|
1114 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1115 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1116 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
1117 |
+
plain tuple.
|
1118 |
+
callback (`Callable`, *optional*):
|
1119 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
1120 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`.
|
1121 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1122 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
1123 |
+
called at every step.
|
1124 |
+
Returns:
|
1125 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
1126 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
1127 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
1128 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
1129 |
+
(nsfw) content, according to the `safety_checker`.
|
1130 |
+
"""
|
1131 |
+
return self.__call__(
|
1132 |
+
prompt=prompt,
|
1133 |
+
negative_prompt=negative_prompt,
|
1134 |
+
image=image,
|
1135 |
+
mask_image=mask_image,
|
1136 |
+
num_inference_steps=num_inference_steps,
|
1137 |
+
guidance_scale=guidance_scale,
|
1138 |
+
strength=strength,
|
1139 |
+
num_images_per_prompt=num_images_per_prompt,
|
1140 |
+
eta=eta,
|
1141 |
+
generator=generator,
|
1142 |
+
max_embeddings_multiples=max_embeddings_multiples,
|
1143 |
+
output_type=output_type,
|
1144 |
+
return_dict=return_dict,
|
1145 |
+
callback=callback,
|
1146 |
+
callback_steps=callback_steps,
|
1147 |
+
**kwargs,
|
1148 |
+
)
|
v0.11.0/multilingual_stable_diffusion.py
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Callable, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from diffusers.configuration_utils import FrozenDict
|
7 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
8 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
9 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
10 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
11 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
12 |
+
from diffusers.utils import deprecate, logging
|
13 |
+
from transformers import (
|
14 |
+
CLIPFeatureExtractor,
|
15 |
+
CLIPTextModel,
|
16 |
+
CLIPTokenizer,
|
17 |
+
MBart50TokenizerFast,
|
18 |
+
MBartForConditionalGeneration,
|
19 |
+
pipeline,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
|
26 |
+
def detect_language(pipe, prompt, batch_size):
|
27 |
+
"""helper function to detect language(s) of prompt"""
|
28 |
+
|
29 |
+
if batch_size == 1:
|
30 |
+
preds = pipe(prompt, top_k=1, truncation=True, max_length=128)
|
31 |
+
return preds[0]["label"]
|
32 |
+
else:
|
33 |
+
detected_languages = []
|
34 |
+
for p in prompt:
|
35 |
+
preds = pipe(p, top_k=1, truncation=True, max_length=128)
|
36 |
+
detected_languages.append(preds[0]["label"])
|
37 |
+
|
38 |
+
return detected_languages
|
39 |
+
|
40 |
+
|
41 |
+
def translate_prompt(prompt, translation_tokenizer, translation_model, device):
|
42 |
+
"""helper function to translate prompt to English"""
|
43 |
+
|
44 |
+
encoded_prompt = translation_tokenizer(prompt, return_tensors="pt").to(device)
|
45 |
+
generated_tokens = translation_model.generate(**encoded_prompt, max_new_tokens=1000)
|
46 |
+
en_trans = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
47 |
+
|
48 |
+
return en_trans[0]
|
49 |
+
|
50 |
+
|
51 |
+
class MultilingualStableDiffusion(DiffusionPipeline):
|
52 |
+
r"""
|
53 |
+
Pipeline for text-to-image generation using Stable Diffusion in different languages.
|
54 |
+
|
55 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
56 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
57 |
+
|
58 |
+
Args:
|
59 |
+
detection_pipeline ([`pipeline`]):
|
60 |
+
Transformers pipeline to detect prompt's language.
|
61 |
+
translation_model ([`MBartForConditionalGeneration`]):
|
62 |
+
Model to translate prompt to English, if necessary. Please refer to the
|
63 |
+
[model card](https://huggingface.co/docs/transformers/model_doc/mbart) for details.
|
64 |
+
translation_tokenizer ([`MBart50TokenizerFast`]):
|
65 |
+
Tokenizer of the translation model.
|
66 |
+
vae ([`AutoencoderKL`]):
|
67 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
68 |
+
text_encoder ([`CLIPTextModel`]):
|
69 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
70 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
71 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
72 |
+
tokenizer (`CLIPTokenizer`):
|
73 |
+
Tokenizer of class
|
74 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
75 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
76 |
+
scheduler ([`SchedulerMixin`]):
|
77 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
78 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
79 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
80 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
81 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
82 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
83 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
84 |
+
"""
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
detection_pipeline: pipeline,
|
89 |
+
translation_model: MBartForConditionalGeneration,
|
90 |
+
translation_tokenizer: MBart50TokenizerFast,
|
91 |
+
vae: AutoencoderKL,
|
92 |
+
text_encoder: CLIPTextModel,
|
93 |
+
tokenizer: CLIPTokenizer,
|
94 |
+
unet: UNet2DConditionModel,
|
95 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
96 |
+
safety_checker: StableDiffusionSafetyChecker,
|
97 |
+
feature_extractor: CLIPFeatureExtractor,
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
102 |
+
deprecation_message = (
|
103 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
104 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
105 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
106 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
107 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
108 |
+
" file"
|
109 |
+
)
|
110 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
111 |
+
new_config = dict(scheduler.config)
|
112 |
+
new_config["steps_offset"] = 1
|
113 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
114 |
+
|
115 |
+
if safety_checker is None:
|
116 |
+
logger.warning(
|
117 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
118 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
119 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
120 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
121 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
122 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
123 |
+
)
|
124 |
+
|
125 |
+
self.register_modules(
|
126 |
+
detection_pipeline=detection_pipeline,
|
127 |
+
translation_model=translation_model,
|
128 |
+
translation_tokenizer=translation_tokenizer,
|
129 |
+
vae=vae,
|
130 |
+
text_encoder=text_encoder,
|
131 |
+
tokenizer=tokenizer,
|
132 |
+
unet=unet,
|
133 |
+
scheduler=scheduler,
|
134 |
+
safety_checker=safety_checker,
|
135 |
+
feature_extractor=feature_extractor,
|
136 |
+
)
|
137 |
+
|
138 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
139 |
+
r"""
|
140 |
+
Enable sliced attention computation.
|
141 |
+
|
142 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
143 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
147 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
148 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
149 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
150 |
+
"""
|
151 |
+
if slice_size == "auto":
|
152 |
+
# half the attention head size is usually a good trade-off between
|
153 |
+
# speed and memory
|
154 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
155 |
+
self.unet.set_attention_slice(slice_size)
|
156 |
+
|
157 |
+
def disable_attention_slicing(self):
|
158 |
+
r"""
|
159 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
160 |
+
back to computing attention in one step.
|
161 |
+
"""
|
162 |
+
# set slice_size = `None` to disable `attention slicing`
|
163 |
+
self.enable_attention_slicing(None)
|
164 |
+
|
165 |
+
@torch.no_grad()
|
166 |
+
def __call__(
|
167 |
+
self,
|
168 |
+
prompt: Union[str, List[str]],
|
169 |
+
height: int = 512,
|
170 |
+
width: int = 512,
|
171 |
+
num_inference_steps: int = 50,
|
172 |
+
guidance_scale: float = 7.5,
|
173 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
174 |
+
num_images_per_prompt: Optional[int] = 1,
|
175 |
+
eta: float = 0.0,
|
176 |
+
generator: Optional[torch.Generator] = None,
|
177 |
+
latents: Optional[torch.FloatTensor] = None,
|
178 |
+
output_type: Optional[str] = "pil",
|
179 |
+
return_dict: bool = True,
|
180 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
181 |
+
callback_steps: Optional[int] = 1,
|
182 |
+
**kwargs,
|
183 |
+
):
|
184 |
+
r"""
|
185 |
+
Function invoked when calling the pipeline for generation.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
prompt (`str` or `List[str]`):
|
189 |
+
The prompt or prompts to guide the image generation. Can be in different languages.
|
190 |
+
height (`int`, *optional*, defaults to 512):
|
191 |
+
The height in pixels of the generated image.
|
192 |
+
width (`int`, *optional*, defaults to 512):
|
193 |
+
The width in pixels of the generated image.
|
194 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
195 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
196 |
+
expense of slower inference.
|
197 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
198 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
199 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
200 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
201 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
202 |
+
usually at the expense of lower image quality.
|
203 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
204 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
205 |
+
if `guidance_scale` is less than `1`).
|
206 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
207 |
+
The number of images to generate per prompt.
|
208 |
+
eta (`float`, *optional*, defaults to 0.0):
|
209 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
210 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
211 |
+
generator (`torch.Generator`, *optional*):
|
212 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
213 |
+
deterministic.
|
214 |
+
latents (`torch.FloatTensor`, *optional*):
|
215 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
216 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
217 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
218 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
219 |
+
The output format of the generate image. Choose between
|
220 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
221 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
222 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
223 |
+
plain tuple.
|
224 |
+
callback (`Callable`, *optional*):
|
225 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
226 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
227 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
228 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
229 |
+
called at every step.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
233 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
234 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
235 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
236 |
+
(nsfw) content, according to the `safety_checker`.
|
237 |
+
"""
|
238 |
+
if isinstance(prompt, str):
|
239 |
+
batch_size = 1
|
240 |
+
elif isinstance(prompt, list):
|
241 |
+
batch_size = len(prompt)
|
242 |
+
else:
|
243 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
244 |
+
|
245 |
+
if height % 8 != 0 or width % 8 != 0:
|
246 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
247 |
+
|
248 |
+
if (callback_steps is None) or (
|
249 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
250 |
+
):
|
251 |
+
raise ValueError(
|
252 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
253 |
+
f" {type(callback_steps)}."
|
254 |
+
)
|
255 |
+
|
256 |
+
# detect language and translate if necessary
|
257 |
+
prompt_language = detect_language(self.detection_pipeline, prompt, batch_size)
|
258 |
+
if batch_size == 1 and prompt_language != "en":
|
259 |
+
prompt = translate_prompt(prompt, self.translation_tokenizer, self.translation_model, self.device)
|
260 |
+
|
261 |
+
if isinstance(prompt, list):
|
262 |
+
for index in range(batch_size):
|
263 |
+
if prompt_language[index] != "en":
|
264 |
+
p = translate_prompt(
|
265 |
+
prompt[index], self.translation_tokenizer, self.translation_model, self.device
|
266 |
+
)
|
267 |
+
prompt[index] = p
|
268 |
+
|
269 |
+
# get prompt text embeddings
|
270 |
+
text_inputs = self.tokenizer(
|
271 |
+
prompt,
|
272 |
+
padding="max_length",
|
273 |
+
max_length=self.tokenizer.model_max_length,
|
274 |
+
return_tensors="pt",
|
275 |
+
)
|
276 |
+
text_input_ids = text_inputs.input_ids
|
277 |
+
|
278 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
279 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
280 |
+
logger.warning(
|
281 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
282 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
283 |
+
)
|
284 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
285 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
286 |
+
|
287 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
288 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
289 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
290 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
291 |
+
|
292 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
293 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
294 |
+
# corresponds to doing no classifier free guidance.
|
295 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
296 |
+
# get unconditional embeddings for classifier free guidance
|
297 |
+
if do_classifier_free_guidance:
|
298 |
+
uncond_tokens: List[str]
|
299 |
+
if negative_prompt is None:
|
300 |
+
uncond_tokens = [""] * batch_size
|
301 |
+
elif type(prompt) is not type(negative_prompt):
|
302 |
+
raise TypeError(
|
303 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
304 |
+
f" {type(prompt)}."
|
305 |
+
)
|
306 |
+
elif isinstance(negative_prompt, str):
|
307 |
+
# detect language and translate it if necessary
|
308 |
+
negative_prompt_language = detect_language(self.detection_pipeline, negative_prompt, batch_size)
|
309 |
+
if negative_prompt_language != "en":
|
310 |
+
negative_prompt = translate_prompt(
|
311 |
+
negative_prompt, self.translation_tokenizer, self.translation_model, self.device
|
312 |
+
)
|
313 |
+
if isinstance(negative_prompt, str):
|
314 |
+
uncond_tokens = [negative_prompt]
|
315 |
+
elif batch_size != len(negative_prompt):
|
316 |
+
raise ValueError(
|
317 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
318 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
319 |
+
" the batch size of `prompt`."
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
# detect language and translate it if necessary
|
323 |
+
if isinstance(negative_prompt, list):
|
324 |
+
negative_prompt_languages = detect_language(self.detection_pipeline, negative_prompt, batch_size)
|
325 |
+
for index in range(batch_size):
|
326 |
+
if negative_prompt_languages[index] != "en":
|
327 |
+
p = translate_prompt(
|
328 |
+
negative_prompt[index], self.translation_tokenizer, self.translation_model, self.device
|
329 |
+
)
|
330 |
+
negative_prompt[index] = p
|
331 |
+
uncond_tokens = negative_prompt
|
332 |
+
|
333 |
+
max_length = text_input_ids.shape[-1]
|
334 |
+
uncond_input = self.tokenizer(
|
335 |
+
uncond_tokens,
|
336 |
+
padding="max_length",
|
337 |
+
max_length=max_length,
|
338 |
+
truncation=True,
|
339 |
+
return_tensors="pt",
|
340 |
+
)
|
341 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
342 |
+
|
343 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
344 |
+
seq_len = uncond_embeddings.shape[1]
|
345 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
346 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
347 |
+
|
348 |
+
# For classifier free guidance, we need to do two forward passes.
|
349 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
350 |
+
# to avoid doing two forward passes
|
351 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
352 |
+
|
353 |
+
# get the initial random noise unless the user supplied it
|
354 |
+
|
355 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
356 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
357 |
+
# However this currently doesn't work in `mps`.
|
358 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
359 |
+
latents_dtype = text_embeddings.dtype
|
360 |
+
if latents is None:
|
361 |
+
if self.device.type == "mps":
|
362 |
+
# randn does not work reproducibly on mps
|
363 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
364 |
+
self.device
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
368 |
+
else:
|
369 |
+
if latents.shape != latents_shape:
|
370 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
371 |
+
latents = latents.to(self.device)
|
372 |
+
|
373 |
+
# set timesteps
|
374 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
375 |
+
|
376 |
+
# Some schedulers like PNDM have timesteps as arrays
|
377 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
378 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
379 |
+
|
380 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
381 |
+
latents = latents * self.scheduler.init_noise_sigma
|
382 |
+
|
383 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
384 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
385 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
386 |
+
# and should be between [0, 1]
|
387 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
388 |
+
extra_step_kwargs = {}
|
389 |
+
if accepts_eta:
|
390 |
+
extra_step_kwargs["eta"] = eta
|
391 |
+
|
392 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
393 |
+
# expand the latents if we are doing classifier free guidance
|
394 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
395 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
396 |
+
|
397 |
+
# predict the noise residual
|
398 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
399 |
+
|
400 |
+
# perform guidance
|
401 |
+
if do_classifier_free_guidance:
|
402 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
403 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
404 |
+
|
405 |
+
# compute the previous noisy sample x_t -> x_t-1
|
406 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
407 |
+
|
408 |
+
# call the callback, if provided
|
409 |
+
if callback is not None and i % callback_steps == 0:
|
410 |
+
callback(i, t, latents)
|
411 |
+
|
412 |
+
latents = 1 / 0.18215 * latents
|
413 |
+
image = self.vae.decode(latents).sample
|
414 |
+
|
415 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
416 |
+
|
417 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
418 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
419 |
+
|
420 |
+
if self.safety_checker is not None:
|
421 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
422 |
+
self.device
|
423 |
+
)
|
424 |
+
image, has_nsfw_concept = self.safety_checker(
|
425 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
has_nsfw_concept = None
|
429 |
+
|
430 |
+
if output_type == "pil":
|
431 |
+
image = self.numpy_to_pil(image)
|
432 |
+
|
433 |
+
if not return_dict:
|
434 |
+
return (image, has_nsfw_concept)
|
435 |
+
|
436 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/one_step_unet.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
+
|
6 |
+
|
7 |
+
class UnetSchedulerOneForwardPipeline(DiffusionPipeline):
|
8 |
+
def __init__(self, unet, scheduler):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
12 |
+
|
13 |
+
def __call__(self):
|
14 |
+
image = torch.randn(
|
15 |
+
(1, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
|
16 |
+
)
|
17 |
+
timestep = 1
|
18 |
+
|
19 |
+
model_output = self.unet(image, timestep).sample
|
20 |
+
scheduler_output = self.scheduler.step(model_output, timestep, image).prev_sample
|
21 |
+
|
22 |
+
result = scheduler_output - scheduler_output + torch.ones_like(scheduler_output)
|
23 |
+
|
24 |
+
return result
|
v0.11.0/sd_text2img_k_diffusion.py
ADDED
@@ -0,0 +1,476 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import importlib
|
16 |
+
import warnings
|
17 |
+
from typing import Callable, List, Optional, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from diffusers import LMSDiscreteScheduler
|
22 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
23 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
24 |
+
from diffusers.utils import is_accelerate_available, logging
|
25 |
+
from k_diffusion.external import CompVisDenoiser, CompVisVDenoiser
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
class ModelWrapper:
|
32 |
+
def __init__(self, model, alphas_cumprod):
|
33 |
+
self.model = model
|
34 |
+
self.alphas_cumprod = alphas_cumprod
|
35 |
+
|
36 |
+
def apply_model(self, *args, **kwargs):
|
37 |
+
if len(args) == 3:
|
38 |
+
encoder_hidden_states = args[-1]
|
39 |
+
args = args[:2]
|
40 |
+
if kwargs.get("cond", None) is not None:
|
41 |
+
encoder_hidden_states = kwargs.pop("cond")
|
42 |
+
return self.model(*args, encoder_hidden_states=encoder_hidden_states, **kwargs).sample
|
43 |
+
|
44 |
+
|
45 |
+
class StableDiffusionPipeline(DiffusionPipeline):
|
46 |
+
r"""
|
47 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
48 |
+
|
49 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
50 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
51 |
+
|
52 |
+
Args:
|
53 |
+
vae ([`AutoencoderKL`]):
|
54 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
55 |
+
text_encoder ([`CLIPTextModel`]):
|
56 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
57 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
58 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
59 |
+
tokenizer (`CLIPTokenizer`):
|
60 |
+
Tokenizer of class
|
61 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
62 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
63 |
+
scheduler ([`SchedulerMixin`]):
|
64 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
65 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
66 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
67 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
68 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
69 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
70 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
71 |
+
"""
|
72 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
73 |
+
|
74 |
+
def __init__(
|
75 |
+
self,
|
76 |
+
vae,
|
77 |
+
text_encoder,
|
78 |
+
tokenizer,
|
79 |
+
unet,
|
80 |
+
scheduler,
|
81 |
+
safety_checker,
|
82 |
+
feature_extractor,
|
83 |
+
):
|
84 |
+
super().__init__()
|
85 |
+
|
86 |
+
if safety_checker is None:
|
87 |
+
logger.warning(
|
88 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
89 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
90 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
91 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
92 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
93 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
94 |
+
)
|
95 |
+
|
96 |
+
# get correct sigmas from LMS
|
97 |
+
scheduler = LMSDiscreteScheduler.from_config(scheduler.config)
|
98 |
+
self.register_modules(
|
99 |
+
vae=vae,
|
100 |
+
text_encoder=text_encoder,
|
101 |
+
tokenizer=tokenizer,
|
102 |
+
unet=unet,
|
103 |
+
scheduler=scheduler,
|
104 |
+
safety_checker=safety_checker,
|
105 |
+
feature_extractor=feature_extractor,
|
106 |
+
)
|
107 |
+
|
108 |
+
model = ModelWrapper(unet, scheduler.alphas_cumprod)
|
109 |
+
if scheduler.prediction_type == "v_prediction":
|
110 |
+
self.k_diffusion_model = CompVisVDenoiser(model)
|
111 |
+
else:
|
112 |
+
self.k_diffusion_model = CompVisDenoiser(model)
|
113 |
+
|
114 |
+
def set_sampler(self, scheduler_type: str):
|
115 |
+
warnings.warn("The `set_sampler` method is deprecated, please use `set_scheduler` instead.")
|
116 |
+
return self.set_scheduler(scheduler_type)
|
117 |
+
|
118 |
+
def set_scheduler(self, scheduler_type: str):
|
119 |
+
library = importlib.import_module("k_diffusion")
|
120 |
+
sampling = getattr(library, "sampling")
|
121 |
+
self.sampler = getattr(sampling, scheduler_type)
|
122 |
+
|
123 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
124 |
+
r"""
|
125 |
+
Enable sliced attention computation.
|
126 |
+
|
127 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
128 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
132 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
133 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
134 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
135 |
+
"""
|
136 |
+
if slice_size == "auto":
|
137 |
+
# half the attention head size is usually a good trade-off between
|
138 |
+
# speed and memory
|
139 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
140 |
+
self.unet.set_attention_slice(slice_size)
|
141 |
+
|
142 |
+
def disable_attention_slicing(self):
|
143 |
+
r"""
|
144 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
145 |
+
back to computing attention in one step.
|
146 |
+
"""
|
147 |
+
# set slice_size = `None` to disable `attention slicing`
|
148 |
+
self.enable_attention_slicing(None)
|
149 |
+
|
150 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
151 |
+
r"""
|
152 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
153 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
154 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
155 |
+
"""
|
156 |
+
if is_accelerate_available():
|
157 |
+
from accelerate import cpu_offload
|
158 |
+
else:
|
159 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
160 |
+
|
161 |
+
device = torch.device(f"cuda:{gpu_id}")
|
162 |
+
|
163 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
|
164 |
+
if cpu_offloaded_model is not None:
|
165 |
+
cpu_offload(cpu_offloaded_model, device)
|
166 |
+
|
167 |
+
@property
|
168 |
+
def _execution_device(self):
|
169 |
+
r"""
|
170 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
171 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
172 |
+
hooks.
|
173 |
+
"""
|
174 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
175 |
+
return self.device
|
176 |
+
for module in self.unet.modules():
|
177 |
+
if (
|
178 |
+
hasattr(module, "_hf_hook")
|
179 |
+
and hasattr(module._hf_hook, "execution_device")
|
180 |
+
and module._hf_hook.execution_device is not None
|
181 |
+
):
|
182 |
+
return torch.device(module._hf_hook.execution_device)
|
183 |
+
return self.device
|
184 |
+
|
185 |
+
def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
186 |
+
r"""
|
187 |
+
Encodes the prompt into text encoder hidden states.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
prompt (`str` or `list(int)`):
|
191 |
+
prompt to be encoded
|
192 |
+
device: (`torch.device`):
|
193 |
+
torch device
|
194 |
+
num_images_per_prompt (`int`):
|
195 |
+
number of images that should be generated per prompt
|
196 |
+
do_classifier_free_guidance (`bool`):
|
197 |
+
whether to use classifier free guidance or not
|
198 |
+
negative_prompt (`str` or `List[str]`):
|
199 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
200 |
+
if `guidance_scale` is less than `1`).
|
201 |
+
"""
|
202 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
203 |
+
|
204 |
+
text_inputs = self.tokenizer(
|
205 |
+
prompt,
|
206 |
+
padding="max_length",
|
207 |
+
max_length=self.tokenizer.model_max_length,
|
208 |
+
truncation=True,
|
209 |
+
return_tensors="pt",
|
210 |
+
)
|
211 |
+
text_input_ids = text_inputs.input_ids
|
212 |
+
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
|
213 |
+
|
214 |
+
if not torch.equal(text_input_ids, untruncated_ids):
|
215 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
216 |
+
logger.warning(
|
217 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
218 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
219 |
+
)
|
220 |
+
|
221 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
222 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
223 |
+
else:
|
224 |
+
attention_mask = None
|
225 |
+
|
226 |
+
text_embeddings = self.text_encoder(
|
227 |
+
text_input_ids.to(device),
|
228 |
+
attention_mask=attention_mask,
|
229 |
+
)
|
230 |
+
text_embeddings = text_embeddings[0]
|
231 |
+
|
232 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
233 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
234 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
235 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
236 |
+
|
237 |
+
# get unconditional embeddings for classifier free guidance
|
238 |
+
if do_classifier_free_guidance:
|
239 |
+
uncond_tokens: List[str]
|
240 |
+
if negative_prompt is None:
|
241 |
+
uncond_tokens = [""] * batch_size
|
242 |
+
elif type(prompt) is not type(negative_prompt):
|
243 |
+
raise TypeError(
|
244 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
245 |
+
f" {type(prompt)}."
|
246 |
+
)
|
247 |
+
elif isinstance(negative_prompt, str):
|
248 |
+
uncond_tokens = [negative_prompt]
|
249 |
+
elif batch_size != len(negative_prompt):
|
250 |
+
raise ValueError(
|
251 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
252 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
253 |
+
" the batch size of `prompt`."
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
uncond_tokens = negative_prompt
|
257 |
+
|
258 |
+
max_length = text_input_ids.shape[-1]
|
259 |
+
uncond_input = self.tokenizer(
|
260 |
+
uncond_tokens,
|
261 |
+
padding="max_length",
|
262 |
+
max_length=max_length,
|
263 |
+
truncation=True,
|
264 |
+
return_tensors="pt",
|
265 |
+
)
|
266 |
+
|
267 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
268 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
269 |
+
else:
|
270 |
+
attention_mask = None
|
271 |
+
|
272 |
+
uncond_embeddings = self.text_encoder(
|
273 |
+
uncond_input.input_ids.to(device),
|
274 |
+
attention_mask=attention_mask,
|
275 |
+
)
|
276 |
+
uncond_embeddings = uncond_embeddings[0]
|
277 |
+
|
278 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
279 |
+
seq_len = uncond_embeddings.shape[1]
|
280 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
281 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
282 |
+
|
283 |
+
# For classifier free guidance, we need to do two forward passes.
|
284 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
285 |
+
# to avoid doing two forward passes
|
286 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
287 |
+
|
288 |
+
return text_embeddings
|
289 |
+
|
290 |
+
def run_safety_checker(self, image, device, dtype):
|
291 |
+
if self.safety_checker is not None:
|
292 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
293 |
+
image, has_nsfw_concept = self.safety_checker(
|
294 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
has_nsfw_concept = None
|
298 |
+
return image, has_nsfw_concept
|
299 |
+
|
300 |
+
def decode_latents(self, latents):
|
301 |
+
latents = 1 / 0.18215 * latents
|
302 |
+
image = self.vae.decode(latents).sample
|
303 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
304 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
305 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
306 |
+
return image
|
307 |
+
|
308 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
309 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
310 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
311 |
+
|
312 |
+
if height % 8 != 0 or width % 8 != 0:
|
313 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
314 |
+
|
315 |
+
if (callback_steps is None) or (
|
316 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
317 |
+
):
|
318 |
+
raise ValueError(
|
319 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
320 |
+
f" {type(callback_steps)}."
|
321 |
+
)
|
322 |
+
|
323 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
324 |
+
shape = (batch_size, num_channels_latents, height // 8, width // 8)
|
325 |
+
if latents is None:
|
326 |
+
if device.type == "mps":
|
327 |
+
# randn does not work reproducibly on mps
|
328 |
+
latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
|
329 |
+
else:
|
330 |
+
latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
|
331 |
+
else:
|
332 |
+
if latents.shape != shape:
|
333 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
334 |
+
latents = latents.to(device)
|
335 |
+
|
336 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
337 |
+
return latents
|
338 |
+
|
339 |
+
@torch.no_grad()
|
340 |
+
def __call__(
|
341 |
+
self,
|
342 |
+
prompt: Union[str, List[str]],
|
343 |
+
height: int = 512,
|
344 |
+
width: int = 512,
|
345 |
+
num_inference_steps: int = 50,
|
346 |
+
guidance_scale: float = 7.5,
|
347 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
348 |
+
num_images_per_prompt: Optional[int] = 1,
|
349 |
+
eta: float = 0.0,
|
350 |
+
generator: Optional[torch.Generator] = None,
|
351 |
+
latents: Optional[torch.FloatTensor] = None,
|
352 |
+
output_type: Optional[str] = "pil",
|
353 |
+
return_dict: bool = True,
|
354 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
355 |
+
callback_steps: Optional[int] = 1,
|
356 |
+
**kwargs,
|
357 |
+
):
|
358 |
+
r"""
|
359 |
+
Function invoked when calling the pipeline for generation.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
prompt (`str` or `List[str]`):
|
363 |
+
The prompt or prompts to guide the image generation.
|
364 |
+
height (`int`, *optional*, defaults to 512):
|
365 |
+
The height in pixels of the generated image.
|
366 |
+
width (`int`, *optional*, defaults to 512):
|
367 |
+
The width in pixels of the generated image.
|
368 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
369 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
370 |
+
expense of slower inference.
|
371 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
372 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
373 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
374 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
375 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
376 |
+
usually at the expense of lower image quality.
|
377 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
378 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
379 |
+
if `guidance_scale` is less than `1`).
|
380 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
381 |
+
The number of images to generate per prompt.
|
382 |
+
eta (`float`, *optional*, defaults to 0.0):
|
383 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
384 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
385 |
+
generator (`torch.Generator`, *optional*):
|
386 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
387 |
+
deterministic.
|
388 |
+
latents (`torch.FloatTensor`, *optional*):
|
389 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
390 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
391 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
392 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
393 |
+
The output format of the generate image. Choose between
|
394 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
395 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
396 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
397 |
+
plain tuple.
|
398 |
+
callback (`Callable`, *optional*):
|
399 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
400 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
401 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
402 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
403 |
+
called at every step.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
407 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
408 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
409 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
410 |
+
(nsfw) content, according to the `safety_checker`.
|
411 |
+
"""
|
412 |
+
|
413 |
+
# 1. Check inputs. Raise error if not correct
|
414 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
415 |
+
|
416 |
+
# 2. Define call parameters
|
417 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
418 |
+
device = self._execution_device
|
419 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
420 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
421 |
+
# corresponds to doing no classifier free guidance.
|
422 |
+
do_classifier_free_guidance = True
|
423 |
+
if guidance_scale <= 1.0:
|
424 |
+
raise ValueError("has to use guidance_scale")
|
425 |
+
|
426 |
+
# 3. Encode input prompt
|
427 |
+
text_embeddings = self._encode_prompt(
|
428 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
429 |
+
)
|
430 |
+
|
431 |
+
# 4. Prepare timesteps
|
432 |
+
self.scheduler.set_timesteps(num_inference_steps, device=text_embeddings.device)
|
433 |
+
sigmas = self.scheduler.sigmas
|
434 |
+
sigmas = sigmas.to(text_embeddings.dtype)
|
435 |
+
|
436 |
+
# 5. Prepare latent variables
|
437 |
+
num_channels_latents = self.unet.in_channels
|
438 |
+
latents = self.prepare_latents(
|
439 |
+
batch_size * num_images_per_prompt,
|
440 |
+
num_channels_latents,
|
441 |
+
height,
|
442 |
+
width,
|
443 |
+
text_embeddings.dtype,
|
444 |
+
device,
|
445 |
+
generator,
|
446 |
+
latents,
|
447 |
+
)
|
448 |
+
latents = latents * sigmas[0]
|
449 |
+
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
|
450 |
+
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(latents.device)
|
451 |
+
|
452 |
+
def model_fn(x, t):
|
453 |
+
latent_model_input = torch.cat([x] * 2)
|
454 |
+
|
455 |
+
noise_pred = self.k_diffusion_model(latent_model_input, t, cond=text_embeddings)
|
456 |
+
|
457 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
458 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
459 |
+
return noise_pred
|
460 |
+
|
461 |
+
latents = self.sampler(model_fn, latents, sigmas)
|
462 |
+
|
463 |
+
# 8. Post-processing
|
464 |
+
image = self.decode_latents(latents)
|
465 |
+
|
466 |
+
# 9. Run safety checker
|
467 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
|
468 |
+
|
469 |
+
# 10. Convert to PIL
|
470 |
+
if output_type == "pil":
|
471 |
+
image = self.numpy_to_pil(image)
|
472 |
+
|
473 |
+
if not return_dict:
|
474 |
+
return (image, has_nsfw_concept)
|
475 |
+
|
476 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/seed_resize_stable_diffusion.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modified based on diffusion library from Huggingface: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
3 |
+
"""
|
4 |
+
import inspect
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
10 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
14 |
+
from diffusers.utils import logging
|
15 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
19 |
+
|
20 |
+
|
21 |
+
class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
|
22 |
+
r"""
|
23 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
24 |
+
|
25 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
26 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
27 |
+
|
28 |
+
Args:
|
29 |
+
vae ([`AutoencoderKL`]):
|
30 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
31 |
+
text_encoder ([`CLIPTextModel`]):
|
32 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
33 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
34 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
35 |
+
tokenizer (`CLIPTokenizer`):
|
36 |
+
Tokenizer of class
|
37 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
38 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
39 |
+
scheduler ([`SchedulerMixin`]):
|
40 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
41 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
42 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
43 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
44 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
45 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
46 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
vae: AutoencoderKL,
|
52 |
+
text_encoder: CLIPTextModel,
|
53 |
+
tokenizer: CLIPTokenizer,
|
54 |
+
unet: UNet2DConditionModel,
|
55 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
56 |
+
safety_checker: StableDiffusionSafetyChecker,
|
57 |
+
feature_extractor: CLIPFeatureExtractor,
|
58 |
+
):
|
59 |
+
super().__init__()
|
60 |
+
self.register_modules(
|
61 |
+
vae=vae,
|
62 |
+
text_encoder=text_encoder,
|
63 |
+
tokenizer=tokenizer,
|
64 |
+
unet=unet,
|
65 |
+
scheduler=scheduler,
|
66 |
+
safety_checker=safety_checker,
|
67 |
+
feature_extractor=feature_extractor,
|
68 |
+
)
|
69 |
+
|
70 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
71 |
+
r"""
|
72 |
+
Enable sliced attention computation.
|
73 |
+
|
74 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
75 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
79 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
80 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
81 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
82 |
+
"""
|
83 |
+
if slice_size == "auto":
|
84 |
+
# half the attention head size is usually a good trade-off between
|
85 |
+
# speed and memory
|
86 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
87 |
+
self.unet.set_attention_slice(slice_size)
|
88 |
+
|
89 |
+
def disable_attention_slicing(self):
|
90 |
+
r"""
|
91 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
92 |
+
back to computing attention in one step.
|
93 |
+
"""
|
94 |
+
# set slice_size = `None` to disable `attention slicing`
|
95 |
+
self.enable_attention_slicing(None)
|
96 |
+
|
97 |
+
@torch.no_grad()
|
98 |
+
def __call__(
|
99 |
+
self,
|
100 |
+
prompt: Union[str, List[str]],
|
101 |
+
height: int = 512,
|
102 |
+
width: int = 512,
|
103 |
+
num_inference_steps: int = 50,
|
104 |
+
guidance_scale: float = 7.5,
|
105 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
106 |
+
num_images_per_prompt: Optional[int] = 1,
|
107 |
+
eta: float = 0.0,
|
108 |
+
generator: Optional[torch.Generator] = None,
|
109 |
+
latents: Optional[torch.FloatTensor] = None,
|
110 |
+
output_type: Optional[str] = "pil",
|
111 |
+
return_dict: bool = True,
|
112 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
113 |
+
callback_steps: Optional[int] = 1,
|
114 |
+
text_embeddings: Optional[torch.FloatTensor] = None,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
r"""
|
118 |
+
Function invoked when calling the pipeline for generation.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
prompt (`str` or `List[str]`):
|
122 |
+
The prompt or prompts to guide the image generation.
|
123 |
+
height (`int`, *optional*, defaults to 512):
|
124 |
+
The height in pixels of the generated image.
|
125 |
+
width (`int`, *optional*, defaults to 512):
|
126 |
+
The width in pixels of the generated image.
|
127 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
128 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
129 |
+
expense of slower inference.
|
130 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
131 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
132 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
133 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
134 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
135 |
+
usually at the expense of lower image quality.
|
136 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
137 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
138 |
+
if `guidance_scale` is less than `1`).
|
139 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
140 |
+
The number of images to generate per prompt.
|
141 |
+
eta (`float`, *optional*, defaults to 0.0):
|
142 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
143 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
144 |
+
generator (`torch.Generator`, *optional*):
|
145 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
146 |
+
deterministic.
|
147 |
+
latents (`torch.FloatTensor`, *optional*):
|
148 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
149 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
150 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
151 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
152 |
+
The output format of the generate image. Choose between
|
153 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
154 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
155 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
156 |
+
plain tuple.
|
157 |
+
callback (`Callable`, *optional*):
|
158 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
159 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
160 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
161 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
162 |
+
called at every step.
|
163 |
+
|
164 |
+
Returns:
|
165 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
166 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
167 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
168 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
169 |
+
(nsfw) content, according to the `safety_checker`.
|
170 |
+
"""
|
171 |
+
|
172 |
+
if isinstance(prompt, str):
|
173 |
+
batch_size = 1
|
174 |
+
elif isinstance(prompt, list):
|
175 |
+
batch_size = len(prompt)
|
176 |
+
else:
|
177 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
178 |
+
|
179 |
+
if height % 8 != 0 or width % 8 != 0:
|
180 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
181 |
+
|
182 |
+
if (callback_steps is None) or (
|
183 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
184 |
+
):
|
185 |
+
raise ValueError(
|
186 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
187 |
+
f" {type(callback_steps)}."
|
188 |
+
)
|
189 |
+
|
190 |
+
# get prompt text embeddings
|
191 |
+
text_inputs = self.tokenizer(
|
192 |
+
prompt,
|
193 |
+
padding="max_length",
|
194 |
+
max_length=self.tokenizer.model_max_length,
|
195 |
+
return_tensors="pt",
|
196 |
+
)
|
197 |
+
text_input_ids = text_inputs.input_ids
|
198 |
+
|
199 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
200 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
201 |
+
logger.warning(
|
202 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
203 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
204 |
+
)
|
205 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
206 |
+
|
207 |
+
if text_embeddings is None:
|
208 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
209 |
+
|
210 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
211 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
212 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
213 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
214 |
+
|
215 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
216 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
217 |
+
# corresponds to doing no classifier free guidance.
|
218 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
219 |
+
# get unconditional embeddings for classifier free guidance
|
220 |
+
if do_classifier_free_guidance:
|
221 |
+
uncond_tokens: List[str]
|
222 |
+
if negative_prompt is None:
|
223 |
+
uncond_tokens = [""]
|
224 |
+
elif type(prompt) is not type(negative_prompt):
|
225 |
+
raise TypeError(
|
226 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
227 |
+
f" {type(prompt)}."
|
228 |
+
)
|
229 |
+
elif isinstance(negative_prompt, str):
|
230 |
+
uncond_tokens = [negative_prompt]
|
231 |
+
elif batch_size != len(negative_prompt):
|
232 |
+
raise ValueError(
|
233 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
234 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
235 |
+
" the batch size of `prompt`."
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
uncond_tokens = negative_prompt
|
239 |
+
|
240 |
+
max_length = text_input_ids.shape[-1]
|
241 |
+
uncond_input = self.tokenizer(
|
242 |
+
uncond_tokens,
|
243 |
+
padding="max_length",
|
244 |
+
max_length=max_length,
|
245 |
+
truncation=True,
|
246 |
+
return_tensors="pt",
|
247 |
+
)
|
248 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
249 |
+
|
250 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
251 |
+
seq_len = uncond_embeddings.shape[1]
|
252 |
+
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
|
253 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
254 |
+
|
255 |
+
# For classifier free guidance, we need to do two forward passes.
|
256 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
257 |
+
# to avoid doing two forward passes
|
258 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
259 |
+
|
260 |
+
# get the initial random noise unless the user supplied it
|
261 |
+
|
262 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
263 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
264 |
+
# However this currently doesn't work in `mps`.
|
265 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
266 |
+
latents_shape_reference = (batch_size * num_images_per_prompt, self.unet.in_channels, 64, 64)
|
267 |
+
latents_dtype = text_embeddings.dtype
|
268 |
+
if latents is None:
|
269 |
+
if self.device.type == "mps":
|
270 |
+
# randn does not exist on mps
|
271 |
+
latents_reference = torch.randn(
|
272 |
+
latents_shape_reference, generator=generator, device="cpu", dtype=latents_dtype
|
273 |
+
).to(self.device)
|
274 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
275 |
+
self.device
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
latents_reference = torch.randn(
|
279 |
+
latents_shape_reference, generator=generator, device=self.device, dtype=latents_dtype
|
280 |
+
)
|
281 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
282 |
+
else:
|
283 |
+
if latents_reference.shape != latents_shape:
|
284 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
285 |
+
latents_reference = latents_reference.to(self.device)
|
286 |
+
latents = latents.to(self.device)
|
287 |
+
|
288 |
+
# This is the key part of the pipeline where we
|
289 |
+
# try to ensure that the generated images w/ the same seed
|
290 |
+
# but different sizes actually result in similar images
|
291 |
+
dx = (latents_shape[3] - latents_shape_reference[3]) // 2
|
292 |
+
dy = (latents_shape[2] - latents_shape_reference[2]) // 2
|
293 |
+
w = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
|
294 |
+
h = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
|
295 |
+
tx = 0 if dx < 0 else dx
|
296 |
+
ty = 0 if dy < 0 else dy
|
297 |
+
dx = max(-dx, 0)
|
298 |
+
dy = max(-dy, 0)
|
299 |
+
# import pdb
|
300 |
+
# pdb.set_trace()
|
301 |
+
latents[:, :, ty : ty + h, tx : tx + w] = latents_reference[:, :, dy : dy + h, dx : dx + w]
|
302 |
+
|
303 |
+
# set timesteps
|
304 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
305 |
+
|
306 |
+
# Some schedulers like PNDM have timesteps as arrays
|
307 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
308 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
309 |
+
|
310 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
311 |
+
latents = latents * self.scheduler.init_noise_sigma
|
312 |
+
|
313 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
314 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
315 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
316 |
+
# and should be between [0, 1]
|
317 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
318 |
+
extra_step_kwargs = {}
|
319 |
+
if accepts_eta:
|
320 |
+
extra_step_kwargs["eta"] = eta
|
321 |
+
|
322 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
323 |
+
# expand the latents if we are doing classifier free guidance
|
324 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
325 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
326 |
+
|
327 |
+
# predict the noise residual
|
328 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
329 |
+
|
330 |
+
# perform guidance
|
331 |
+
if do_classifier_free_guidance:
|
332 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
333 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
334 |
+
|
335 |
+
# compute the previous noisy sample x_t -> x_t-1
|
336 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
337 |
+
|
338 |
+
# call the callback, if provided
|
339 |
+
if callback is not None and i % callback_steps == 0:
|
340 |
+
callback(i, t, latents)
|
341 |
+
|
342 |
+
latents = 1 / 0.18215 * latents
|
343 |
+
image = self.vae.decode(latents).sample
|
344 |
+
|
345 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
346 |
+
|
347 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
348 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
349 |
+
|
350 |
+
if self.safety_checker is not None:
|
351 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
352 |
+
self.device
|
353 |
+
)
|
354 |
+
image, has_nsfw_concept = self.safety_checker(
|
355 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
356 |
+
)
|
357 |
+
else:
|
358 |
+
has_nsfw_concept = None
|
359 |
+
|
360 |
+
if output_type == "pil":
|
361 |
+
image = self.numpy_to_pil(image)
|
362 |
+
|
363 |
+
if not return_dict:
|
364 |
+
return (image, has_nsfw_concept)
|
365 |
+
|
366 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
v0.11.0/speech_to_image_diffusion.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Callable, List, Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKL,
|
8 |
+
DDIMScheduler,
|
9 |
+
DiffusionPipeline,
|
10 |
+
LMSDiscreteScheduler,
|
11 |
+
PNDMScheduler,
|
12 |
+
UNet2DConditionModel,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
15 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
16 |
+
from diffusers.utils import logging
|
17 |
+
from transformers import (
|
18 |
+
CLIPFeatureExtractor,
|
19 |
+
CLIPTextModel,
|
20 |
+
CLIPTokenizer,
|
21 |
+
WhisperForConditionalGeneration,
|
22 |
+
WhisperProcessor,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
27 |
+
|
28 |
+
|
29 |
+
class SpeechToImagePipeline(DiffusionPipeline):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
speech_model: WhisperForConditionalGeneration,
|
33 |
+
speech_processor: WhisperProcessor,
|
34 |
+
vae: AutoencoderKL,
|
35 |
+
text_encoder: CLIPTextModel,
|
36 |
+
tokenizer: CLIPTokenizer,
|
37 |
+
unet: UNet2DConditionModel,
|
38 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
39 |
+
safety_checker: StableDiffusionSafetyChecker,
|
40 |
+
feature_extractor: CLIPFeatureExtractor,
|
41 |
+
):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
if safety_checker is None:
|
45 |
+
logger.warning(
|
46 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
47 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
48 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
49 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
50 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
51 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
52 |
+
)
|
53 |
+
|
54 |
+
self.register_modules(
|
55 |
+
speech_model=speech_model,
|
56 |
+
speech_processor=speech_processor,
|
57 |
+
vae=vae,
|
58 |
+
text_encoder=text_encoder,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
unet=unet,
|
61 |
+
scheduler=scheduler,
|
62 |
+
feature_extractor=feature_extractor,
|
63 |
+
)
|
64 |
+
|
65 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
66 |
+
if slice_size == "auto":
|
67 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
68 |
+
self.unet.set_attention_slice(slice_size)
|
69 |
+
|
70 |
+
def disable_attention_slicing(self):
|
71 |
+
self.enable_attention_slicing(None)
|
72 |
+
|
73 |
+
@torch.no_grad()
|
74 |
+
def __call__(
|
75 |
+
self,
|
76 |
+
audio,
|
77 |
+
sampling_rate=16_000,
|
78 |
+
height: int = 512,
|
79 |
+
width: int = 512,
|
80 |
+
num_inference_steps: int = 50,
|
81 |
+
guidance_scale: float = 7.5,
|
82 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
83 |
+
num_images_per_prompt: Optional[int] = 1,
|
84 |
+
eta: float = 0.0,
|
85 |
+
generator: Optional[torch.Generator] = None,
|
86 |
+
latents: Optional[torch.FloatTensor] = None,
|
87 |
+
output_type: Optional[str] = "pil",
|
88 |
+
return_dict: bool = True,
|
89 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
90 |
+
callback_steps: Optional[int] = 1,
|
91 |
+
**kwargs,
|
92 |
+
):
|
93 |
+
inputs = self.speech_processor.feature_extractor(
|
94 |
+
audio, return_tensors="pt", sampling_rate=sampling_rate
|
95 |
+
).input_features.to(self.device)
|
96 |
+
predicted_ids = self.speech_model.generate(inputs, max_length=480_000)
|
97 |
+
|
98 |
+
prompt = self.speech_processor.tokenizer.batch_decode(predicted_ids, skip_special_tokens=True, normalize=True)[
|
99 |
+
0
|
100 |
+
]
|
101 |
+
|
102 |
+
if isinstance(prompt, str):
|
103 |
+
batch_size = 1
|
104 |
+
elif isinstance(prompt, list):
|
105 |
+
batch_size = len(prompt)
|
106 |
+
else:
|
107 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
108 |
+
|
109 |
+
if height % 8 != 0 or width % 8 != 0:
|
110 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
111 |
+
|
112 |
+
if (callback_steps is None) or (
|
113 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
114 |
+
):
|
115 |
+
raise ValueError(
|
116 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
117 |
+
f" {type(callback_steps)}."
|
118 |
+
)
|
119 |
+
|
120 |
+
# get prompt text embeddings
|
121 |
+
text_inputs = self.tokenizer(
|
122 |
+
prompt,
|
123 |
+
padding="max_length",
|
124 |
+
max_length=self.tokenizer.model_max_length,
|
125 |
+
return_tensors="pt",
|
126 |
+
)
|
127 |
+
text_input_ids = text_inputs.input_ids
|
128 |
+
|
129 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
130 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
131 |
+
logger.warning(
|
132 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
133 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
134 |
+
)
|
135 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
136 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
137 |
+
|
138 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
139 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
140 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
141 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
142 |
+
|
143 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
144 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
145 |
+
# corresponds to doing no classifier free guidance.
|
146 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
147 |
+
# get unconditional embeddings for classifier free guidance
|
148 |
+
if do_classifier_free_guidance:
|
149 |
+
uncond_tokens: List[str]
|
150 |
+
if negative_prompt is None:
|
151 |
+
uncond_tokens = [""] * batch_size
|
152 |
+
elif type(prompt) is not type(negative_prompt):
|
153 |
+
raise TypeError(
|
154 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
155 |
+
f" {type(prompt)}."
|
156 |
+
)
|
157 |
+
elif isinstance(negative_prompt, str):
|
158 |
+
uncond_tokens = [negative_prompt]
|
159 |
+
elif batch_size != len(negative_prompt):
|
160 |
+
raise ValueError(
|
161 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
162 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
163 |
+
" the batch size of `prompt`."
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
uncond_tokens = negative_prompt
|
167 |
+
|
168 |
+
max_length = text_input_ids.shape[-1]
|
169 |
+
uncond_input = self.tokenizer(
|
170 |
+
uncond_tokens,
|
171 |
+
padding="max_length",
|
172 |
+
max_length=max_length,
|
173 |
+
truncation=True,
|
174 |
+
return_tensors="pt",
|
175 |
+
)
|
176 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
177 |
+
|
178 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
179 |
+
seq_len = uncond_embeddings.shape[1]
|
180 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
181 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
182 |
+
|
183 |
+
# For classifier free guidance, we need to do two forward passes.
|
184 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
185 |
+
# to avoid doing two forward passes
|
186 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
187 |
+
|
188 |
+
# get the initial random noise unless the user supplied it
|
189 |
+
|
190 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
191 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
192 |
+
# However this currently doesn't work in `mps`.
|
193 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
194 |
+
latents_dtype = text_embeddings.dtype
|
195 |
+
if latents is None:
|
196 |
+
if self.device.type == "mps":
|
197 |
+
# randn does not exist on mps
|
198 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
199 |
+
self.device
|
200 |
+
)
|
201 |
+
else:
|
202 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
203 |
+
else:
|
204 |
+
if latents.shape != latents_shape:
|
205 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
206 |
+
latents = latents.to(self.device)
|
207 |
+
|
208 |
+
# set timesteps
|
209 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
210 |
+
|
211 |
+
# Some schedulers like PNDM have timesteps as arrays
|
212 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
213 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
214 |
+
|
215 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
216 |
+
latents = latents * self.scheduler.init_noise_sigma
|
217 |
+
|
218 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
219 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
220 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
221 |
+
# and should be between [0, 1]
|
222 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
223 |
+
extra_step_kwargs = {}
|
224 |
+
if accepts_eta:
|
225 |
+
extra_step_kwargs["eta"] = eta
|
226 |
+
|
227 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
228 |
+
# expand the latents if we are doing classifier free guidance
|
229 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
230 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
231 |
+
|
232 |
+
# predict the noise residual
|
233 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
234 |
+
|
235 |
+
# perform guidance
|
236 |
+
if do_classifier_free_guidance:
|
237 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
238 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
239 |
+
|
240 |
+
# compute the previous noisy sample x_t -> x_t-1
|
241 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
242 |
+
|
243 |
+
# call the callback, if provided
|
244 |
+
if callback is not None and i % callback_steps == 0:
|
245 |
+
callback(i, t, latents)
|
246 |
+
|
247 |
+
latents = 1 / 0.18215 * latents
|
248 |
+
image = self.vae.decode(latents).sample
|
249 |
+
|
250 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
251 |
+
|
252 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
253 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
254 |
+
|
255 |
+
if output_type == "pil":
|
256 |
+
image = self.numpy_to_pil(image)
|
257 |
+
|
258 |
+
if not return_dict:
|
259 |
+
return image
|
260 |
+
|
261 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)
|
v0.11.0/stable_diffusion_comparison.py
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from diffusers import (
|
6 |
+
AutoencoderKL,
|
7 |
+
DDIMScheduler,
|
8 |
+
DiffusionPipeline,
|
9 |
+
LMSDiscreteScheduler,
|
10 |
+
PNDMScheduler,
|
11 |
+
StableDiffusionPipeline,
|
12 |
+
UNet2DConditionModel,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
15 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
16 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
17 |
+
|
18 |
+
|
19 |
+
pipe1_model_id = "CompVis/stable-diffusion-v1-1"
|
20 |
+
pipe2_model_id = "CompVis/stable-diffusion-v1-2"
|
21 |
+
pipe3_model_id = "CompVis/stable-diffusion-v1-3"
|
22 |
+
pipe4_model_id = "CompVis/stable-diffusion-v1-4"
|
23 |
+
|
24 |
+
|
25 |
+
class StableDiffusionComparisonPipeline(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
Pipeline for parallel comparison of Stable Diffusion v1-v4
|
28 |
+
This pipeline inherits from DiffusionPipeline and depends on the use of an Auth Token for
|
29 |
+
downloading pre-trained checkpoints from Hugging Face Hub.
|
30 |
+
If using Hugging Face Hub, pass the Model ID for Stable Diffusion v1.4 as the previous 3 checkpoints will be loaded
|
31 |
+
automatically.
|
32 |
+
Args:
|
33 |
+
vae ([`AutoencoderKL`]):
|
34 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
35 |
+
text_encoder ([`CLIPTextModel`]):
|
36 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
37 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
38 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
39 |
+
tokenizer (`CLIPTokenizer`):
|
40 |
+
Tokenizer of class
|
41 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
42 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
43 |
+
scheduler ([`SchedulerMixin`]):
|
44 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
45 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
46 |
+
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
|
47 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
48 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
49 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
50 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
vae: AutoencoderKL,
|
56 |
+
text_encoder: CLIPTextModel,
|
57 |
+
tokenizer: CLIPTokenizer,
|
58 |
+
unet: UNet2DConditionModel,
|
59 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
60 |
+
safety_checker: StableDiffusionSafetyChecker,
|
61 |
+
feature_extractor: CLIPFeatureExtractor,
|
62 |
+
requires_safety_checker: bool = True,
|
63 |
+
):
|
64 |
+
super()._init_()
|
65 |
+
|
66 |
+
self.pipe1 = StableDiffusionPipeline.from_pretrained(pipe1_model_id)
|
67 |
+
self.pipe2 = StableDiffusionPipeline.from_pretrained(pipe2_model_id)
|
68 |
+
self.pipe3 = StableDiffusionPipeline.from_pretrained(pipe3_model_id)
|
69 |
+
self.pipe4 = StableDiffusionPipeline(
|
70 |
+
vae=vae,
|
71 |
+
text_encoder=text_encoder,
|
72 |
+
tokenizer=tokenizer,
|
73 |
+
unet=unet,
|
74 |
+
scheduler=scheduler,
|
75 |
+
safety_checker=safety_checker,
|
76 |
+
feature_extractor=feature_extractor,
|
77 |
+
requires_safety_checker=requires_safety_checker,
|
78 |
+
)
|
79 |
+
|
80 |
+
self.register_modules(pipeline1=self.pipe1, pipeline2=self.pipe2, pipeline3=self.pipe3, pipeline4=self.pipe4)
|
81 |
+
|
82 |
+
@property
|
83 |
+
def layers(self) -> Dict[str, Any]:
|
84 |
+
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
|
85 |
+
|
86 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
87 |
+
r"""
|
88 |
+
Enable sliced attention computation.
|
89 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
90 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
91 |
+
Args:
|
92 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
93 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
94 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
95 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
96 |
+
"""
|
97 |
+
if slice_size == "auto":
|
98 |
+
# half the attention head size is usually a good trade-off between
|
99 |
+
# speed and memory
|
100 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
101 |
+
self.unet.set_attention_slice(slice_size)
|
102 |
+
|
103 |
+
def disable_attention_slicing(self):
|
104 |
+
r"""
|
105 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
106 |
+
back to computing attention in one step.
|
107 |
+
"""
|
108 |
+
# set slice_size = `None` to disable `attention slicing`
|
109 |
+
self.enable_attention_slicing(None)
|
110 |
+
|
111 |
+
@torch.no_grad()
|
112 |
+
def text2img_sd1_1(
|
113 |
+
self,
|
114 |
+
prompt: Union[str, List[str]],
|
115 |
+
height: int = 512,
|
116 |
+
width: int = 512,
|
117 |
+
num_inference_steps: int = 50,
|
118 |
+
guidance_scale: float = 7.5,
|
119 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
120 |
+
num_images_per_prompt: Optional[int] = 1,
|
121 |
+
eta: float = 0.0,
|
122 |
+
generator: Optional[torch.Generator] = None,
|
123 |
+
latents: Optional[torch.FloatTensor] = None,
|
124 |
+
output_type: Optional[str] = "pil",
|
125 |
+
return_dict: bool = True,
|
126 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
127 |
+
callback_steps: Optional[int] = 1,
|
128 |
+
**kwargs,
|
129 |
+
):
|
130 |
+
return self.pipe1(
|
131 |
+
prompt=prompt,
|
132 |
+
height=height,
|
133 |
+
width=width,
|
134 |
+
num_inference_steps=num_inference_steps,
|
135 |
+
guidance_scale=guidance_scale,
|
136 |
+
negative_prompt=negative_prompt,
|
137 |
+
num_images_per_prompt=num_images_per_prompt,
|
138 |
+
eta=eta,
|
139 |
+
generator=generator,
|
140 |
+
latents=latents,
|
141 |
+
output_type=output_type,
|
142 |
+
return_dict=return_dict,
|
143 |
+
callback=callback,
|
144 |
+
callback_steps=callback_steps,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
|
148 |
+
@torch.no_grad()
|
149 |
+
def text2img_sd1_2(
|
150 |
+
self,
|
151 |
+
prompt: Union[str, List[str]],
|
152 |
+
height: int = 512,
|
153 |
+
width: int = 512,
|
154 |
+
num_inference_steps: int = 50,
|
155 |
+
guidance_scale: float = 7.5,
|
156 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
157 |
+
num_images_per_prompt: Optional[int] = 1,
|
158 |
+
eta: float = 0.0,
|
159 |
+
generator: Optional[torch.Generator] = None,
|
160 |
+
latents: Optional[torch.FloatTensor] = None,
|
161 |
+
output_type: Optional[str] = "pil",
|
162 |
+
return_dict: bool = True,
|
163 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
164 |
+
callback_steps: Optional[int] = 1,
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
return self.pipe2(
|
168 |
+
prompt=prompt,
|
169 |
+
height=height,
|
170 |
+
width=width,
|
171 |
+
num_inference_steps=num_inference_steps,
|
172 |
+
guidance_scale=guidance_scale,
|
173 |
+
negative_prompt=negative_prompt,
|
174 |
+
num_images_per_prompt=num_images_per_prompt,
|
175 |
+
eta=eta,
|
176 |
+
generator=generator,
|
177 |
+
latents=latents,
|
178 |
+
output_type=output_type,
|
179 |
+
return_dict=return_dict,
|
180 |
+
callback=callback,
|
181 |
+
callback_steps=callback_steps,
|
182 |
+
**kwargs,
|
183 |
+
)
|
184 |
+
|
185 |
+
@torch.no_grad()
|
186 |
+
def text2img_sd1_3(
|
187 |
+
self,
|
188 |
+
prompt: Union[str, List[str]],
|
189 |
+
height: int = 512,
|
190 |
+
width: int = 512,
|
191 |
+
num_inference_steps: int = 50,
|
192 |
+
guidance_scale: float = 7.5,
|
193 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
194 |
+
num_images_per_prompt: Optional[int] = 1,
|
195 |
+
eta: float = 0.0,
|
196 |
+
generator: Optional[torch.Generator] = None,
|
197 |
+
latents: Optional[torch.FloatTensor] = None,
|
198 |
+
output_type: Optional[str] = "pil",
|
199 |
+
return_dict: bool = True,
|
200 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
201 |
+
callback_steps: Optional[int] = 1,
|
202 |
+
**kwargs,
|
203 |
+
):
|
204 |
+
return self.pipe3(
|
205 |
+
prompt=prompt,
|
206 |
+
height=height,
|
207 |
+
width=width,
|
208 |
+
num_inference_steps=num_inference_steps,
|
209 |
+
guidance_scale=guidance_scale,
|
210 |
+
negative_prompt=negative_prompt,
|
211 |
+
num_images_per_prompt=num_images_per_prompt,
|
212 |
+
eta=eta,
|
213 |
+
generator=generator,
|
214 |
+
latents=latents,
|
215 |
+
output_type=output_type,
|
216 |
+
return_dict=return_dict,
|
217 |
+
callback=callback,
|
218 |
+
callback_steps=callback_steps,
|
219 |
+
**kwargs,
|
220 |
+
)
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def text2img_sd1_4(
|
224 |
+
self,
|
225 |
+
prompt: Union[str, List[str]],
|
226 |
+
height: int = 512,
|
227 |
+
width: int = 512,
|
228 |
+
num_inference_steps: int = 50,
|
229 |
+
guidance_scale: float = 7.5,
|
230 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
231 |
+
num_images_per_prompt: Optional[int] = 1,
|
232 |
+
eta: float = 0.0,
|
233 |
+
generator: Optional[torch.Generator] = None,
|
234 |
+
latents: Optional[torch.FloatTensor] = None,
|
235 |
+
output_type: Optional[str] = "pil",
|
236 |
+
return_dict: bool = True,
|
237 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
238 |
+
callback_steps: Optional[int] = 1,
|
239 |
+
**kwargs,
|
240 |
+
):
|
241 |
+
return self.pipe4(
|
242 |
+
prompt=prompt,
|
243 |
+
height=height,
|
244 |
+
width=width,
|
245 |
+
num_inference_steps=num_inference_steps,
|
246 |
+
guidance_scale=guidance_scale,
|
247 |
+
negative_prompt=negative_prompt,
|
248 |
+
num_images_per_prompt=num_images_per_prompt,
|
249 |
+
eta=eta,
|
250 |
+
generator=generator,
|
251 |
+
latents=latents,
|
252 |
+
output_type=output_type,
|
253 |
+
return_dict=return_dict,
|
254 |
+
callback=callback,
|
255 |
+
callback_steps=callback_steps,
|
256 |
+
**kwargs,
|
257 |
+
)
|
258 |
+
|
259 |
+
@torch.no_grad()
|
260 |
+
def _call_(
|
261 |
+
self,
|
262 |
+
prompt: Union[str, List[str]],
|
263 |
+
height: int = 512,
|
264 |
+
width: int = 512,
|
265 |
+
num_inference_steps: int = 50,
|
266 |
+
guidance_scale: float = 7.5,
|
267 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
268 |
+
num_images_per_prompt: Optional[int] = 1,
|
269 |
+
eta: float = 0.0,
|
270 |
+
generator: Optional[torch.Generator] = None,
|
271 |
+
latents: Optional[torch.FloatTensor] = None,
|
272 |
+
output_type: Optional[str] = "pil",
|
273 |
+
return_dict: bool = True,
|
274 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
275 |
+
callback_steps: Optional[int] = 1,
|
276 |
+
**kwargs,
|
277 |
+
):
|
278 |
+
r"""
|
279 |
+
Function invoked when calling the pipeline for generation. This function will generate 4 results as part
|
280 |
+
of running all the 4 pipelines for SD1.1-1.4 together in a serial-processing, parallel-invocation fashion.
|
281 |
+
Args:
|
282 |
+
prompt (`str` or `List[str]`):
|
283 |
+
The prompt or prompts to guide the image generation.
|
284 |
+
height (`int`, optional, defaults to 512):
|
285 |
+
The height in pixels of the generated image.
|
286 |
+
width (`int`, optional, defaults to 512):
|
287 |
+
The width in pixels of the generated image.
|
288 |
+
num_inference_steps (`int`, optional, defaults to 50):
|
289 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
290 |
+
expense of slower inference.
|
291 |
+
guidance_scale (`float`, optional, defaults to 7.5):
|
292 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
293 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
294 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
295 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
296 |
+
usually at the expense of lower image quality.
|
297 |
+
eta (`float`, optional, defaults to 0.0):
|
298 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
299 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
300 |
+
generator (`torch.Generator`, optional):
|
301 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
302 |
+
deterministic.
|
303 |
+
latents (`torch.FloatTensor`, optional):
|
304 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
305 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
306 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
307 |
+
output_type (`str`, optional, defaults to `"pil"`):
|
308 |
+
The output format of the generate image. Choose between
|
309 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
310 |
+
return_dict (`bool`, optional, defaults to `True`):
|
311 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
312 |
+
plain tuple.
|
313 |
+
Returns:
|
314 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
315 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
316 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
317 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
318 |
+
(nsfw) content, according to the `safety_checker`.
|
319 |
+
"""
|
320 |
+
|
321 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
322 |
+
self.to(device)
|
323 |
+
|
324 |
+
# Checks if the height and width are divisible by 8 or not
|
325 |
+
if height % 8 != 0 or width % 8 != 0:
|
326 |
+
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}.")
|
327 |
+
|
328 |
+
# Get first result from Stable Diffusion Checkpoint v1.1
|
329 |
+
res1 = self.text2img_sd1_1(
|
330 |
+
prompt=prompt,
|
331 |
+
height=height,
|
332 |
+
width=width,
|
333 |
+
num_inference_steps=num_inference_steps,
|
334 |
+
guidance_scale=guidance_scale,
|
335 |
+
negative_prompt=negative_prompt,
|
336 |
+
num_images_per_prompt=num_images_per_prompt,
|
337 |
+
eta=eta,
|
338 |
+
generator=generator,
|
339 |
+
latents=latents,
|
340 |
+
output_type=output_type,
|
341 |
+
return_dict=return_dict,
|
342 |
+
callback=callback,
|
343 |
+
callback_steps=callback_steps,
|
344 |
+
**kwargs,
|
345 |
+
)
|
346 |
+
|
347 |
+
# Get first result from Stable Diffusion Checkpoint v1.2
|
348 |
+
res2 = self.text2img_sd1_2(
|
349 |
+
prompt=prompt,
|
350 |
+
height=height,
|
351 |
+
width=width,
|
352 |
+
num_inference_steps=num_inference_steps,
|
353 |
+
guidance_scale=guidance_scale,
|
354 |
+
negative_prompt=negative_prompt,
|
355 |
+
num_images_per_prompt=num_images_per_prompt,
|
356 |
+
eta=eta,
|
357 |
+
generator=generator,
|
358 |
+
latents=latents,
|
359 |
+
output_type=output_type,
|
360 |
+
return_dict=return_dict,
|
361 |
+
callback=callback,
|
362 |
+
callback_steps=callback_steps,
|
363 |
+
**kwargs,
|
364 |
+
)
|
365 |
+
|
366 |
+
# Get first result from Stable Diffusion Checkpoint v1.3
|
367 |
+
res3 = self.text2img_sd1_3(
|
368 |
+
prompt=prompt,
|
369 |
+
height=height,
|
370 |
+
width=width,
|
371 |
+
num_inference_steps=num_inference_steps,
|
372 |
+
guidance_scale=guidance_scale,
|
373 |
+
negative_prompt=negative_prompt,
|
374 |
+
num_images_per_prompt=num_images_per_prompt,
|
375 |
+
eta=eta,
|
376 |
+
generator=generator,
|
377 |
+
latents=latents,
|
378 |
+
output_type=output_type,
|
379 |
+
return_dict=return_dict,
|
380 |
+
callback=callback,
|
381 |
+
callback_steps=callback_steps,
|
382 |
+
**kwargs,
|
383 |
+
)
|
384 |
+
|
385 |
+
# Get first result from Stable Diffusion Checkpoint v1.4
|
386 |
+
res4 = self.text2img_sd1_4(
|
387 |
+
prompt=prompt,
|
388 |
+
height=height,
|
389 |
+
width=width,
|
390 |
+
num_inference_steps=num_inference_steps,
|
391 |
+
guidance_scale=guidance_scale,
|
392 |
+
negative_prompt=negative_prompt,
|
393 |
+
num_images_per_prompt=num_images_per_prompt,
|
394 |
+
eta=eta,
|
395 |
+
generator=generator,
|
396 |
+
latents=latents,
|
397 |
+
output_type=output_type,
|
398 |
+
return_dict=return_dict,
|
399 |
+
callback=callback,
|
400 |
+
callback_steps=callback_steps,
|
401 |
+
**kwargs,
|
402 |
+
)
|
403 |
+
|
404 |
+
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
|
405 |
+
return StableDiffusionPipelineOutput([res1[0], res2[0], res3[0], res4[0]])
|
v0.11.0/stable_diffusion_mega.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import PIL.Image
|
6 |
+
from diffusers import (
|
7 |
+
AutoencoderKL,
|
8 |
+
DDIMScheduler,
|
9 |
+
DiffusionPipeline,
|
10 |
+
LMSDiscreteScheduler,
|
11 |
+
PNDMScheduler,
|
12 |
+
StableDiffusionImg2ImgPipeline,
|
13 |
+
StableDiffusionInpaintPipelineLegacy,
|
14 |
+
StableDiffusionPipeline,
|
15 |
+
UNet2DConditionModel,
|
16 |
+
)
|
17 |
+
from diffusers.configuration_utils import FrozenDict
|
18 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
19 |
+
from diffusers.utils import deprecate, logging
|
20 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
24 |
+
|
25 |
+
|
26 |
+
class StableDiffusionMegaPipeline(DiffusionPipeline):
|
27 |
+
r"""
|
28 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
29 |
+
|
30 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
31 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
32 |
+
|
33 |
+
Args:
|
34 |
+
vae ([`AutoencoderKL`]):
|
35 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
36 |
+
text_encoder ([`CLIPTextModel`]):
|
37 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
38 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
39 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
40 |
+
tokenizer (`CLIPTokenizer`):
|
41 |
+
Tokenizer of class
|
42 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
43 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
44 |
+
scheduler ([`SchedulerMixin`]):
|
45 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
46 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
47 |
+
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
|
48 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
49 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
50 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
51 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
52 |
+
"""
|
53 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
vae: AutoencoderKL,
|
58 |
+
text_encoder: CLIPTextModel,
|
59 |
+
tokenizer: CLIPTokenizer,
|
60 |
+
unet: UNet2DConditionModel,
|
61 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
62 |
+
safety_checker: StableDiffusionSafetyChecker,
|
63 |
+
feature_extractor: CLIPFeatureExtractor,
|
64 |
+
requires_safety_checker: bool = True,
|
65 |
+
):
|
66 |
+
super().__init__()
|
67 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
68 |
+
deprecation_message = (
|
69 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
70 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
71 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
72 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
73 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
74 |
+
" file"
|
75 |
+
)
|
76 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
77 |
+
new_config = dict(scheduler.config)
|
78 |
+
new_config["steps_offset"] = 1
|
79 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
80 |
+
|
81 |
+
self.register_modules(
|
82 |
+
vae=vae,
|
83 |
+
text_encoder=text_encoder,
|
84 |
+
tokenizer=tokenizer,
|
85 |
+
unet=unet,
|
86 |
+
scheduler=scheduler,
|
87 |
+
safety_checker=safety_checker,
|
88 |
+
feature_extractor=feature_extractor,
|
89 |
+
)
|
90 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
91 |
+
|
92 |
+
@property
|
93 |
+
def components(self) -> Dict[str, Any]:
|
94 |
+
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
|
95 |
+
|
96 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
97 |
+
r"""
|
98 |
+
Enable sliced attention computation.
|
99 |
+
|
100 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
101 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
105 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
106 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
107 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
108 |
+
"""
|
109 |
+
if slice_size == "auto":
|
110 |
+
# half the attention head size is usually a good trade-off between
|
111 |
+
# speed and memory
|
112 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
113 |
+
self.unet.set_attention_slice(slice_size)
|
114 |
+
|
115 |
+
def disable_attention_slicing(self):
|
116 |
+
r"""
|
117 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
118 |
+
back to computing attention in one step.
|
119 |
+
"""
|
120 |
+
# set slice_size = `None` to disable `attention slicing`
|
121 |
+
self.enable_attention_slicing(None)
|
122 |
+
|
123 |
+
@torch.no_grad()
|
124 |
+
def inpaint(
|
125 |
+
self,
|
126 |
+
prompt: Union[str, List[str]],
|
127 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
128 |
+
mask_image: Union[torch.FloatTensor, PIL.Image.Image],
|
129 |
+
strength: float = 0.8,
|
130 |
+
num_inference_steps: Optional[int] = 50,
|
131 |
+
guidance_scale: Optional[float] = 7.5,
|
132 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
133 |
+
num_images_per_prompt: Optional[int] = 1,
|
134 |
+
eta: Optional[float] = 0.0,
|
135 |
+
generator: Optional[torch.Generator] = None,
|
136 |
+
output_type: Optional[str] = "pil",
|
137 |
+
return_dict: bool = True,
|
138 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
139 |
+
callback_steps: Optional[int] = 1,
|
140 |
+
):
|
141 |
+
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
|
142 |
+
return StableDiffusionInpaintPipelineLegacy(**self.components)(
|
143 |
+
prompt=prompt,
|
144 |
+
image=image,
|
145 |
+
mask_image=mask_image,
|
146 |
+
strength=strength,
|
147 |
+
num_inference_steps=num_inference_steps,
|
148 |
+
guidance_scale=guidance_scale,
|
149 |
+
negative_prompt=negative_prompt,
|
150 |
+
num_images_per_prompt=num_images_per_prompt,
|
151 |
+
eta=eta,
|
152 |
+
generator=generator,
|
153 |
+
output_type=output_type,
|
154 |
+
return_dict=return_dict,
|
155 |
+
callback=callback,
|
156 |
+
)
|
157 |
+
|
158 |
+
@torch.no_grad()
|
159 |
+
def img2img(
|
160 |
+
self,
|
161 |
+
prompt: Union[str, List[str]],
|
162 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
163 |
+
strength: float = 0.8,
|
164 |
+
num_inference_steps: Optional[int] = 50,
|
165 |
+
guidance_scale: Optional[float] = 7.5,
|
166 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
167 |
+
num_images_per_prompt: Optional[int] = 1,
|
168 |
+
eta: Optional[float] = 0.0,
|
169 |
+
generator: Optional[torch.Generator] = None,
|
170 |
+
output_type: Optional[str] = "pil",
|
171 |
+
return_dict: bool = True,
|
172 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
173 |
+
callback_steps: Optional[int] = 1,
|
174 |
+
**kwargs,
|
175 |
+
):
|
176 |
+
# For more information on how this function works, please see: https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionImg2ImgPipeline
|
177 |
+
return StableDiffusionImg2ImgPipeline(**self.components)(
|
178 |
+
prompt=prompt,
|
179 |
+
image=image,
|
180 |
+
strength=strength,
|
181 |
+
num_inference_steps=num_inference_steps,
|
182 |
+
guidance_scale=guidance_scale,
|
183 |
+
negative_prompt=negative_prompt,
|
184 |
+
num_images_per_prompt=num_images_per_prompt,
|
185 |
+
eta=eta,
|
186 |
+
generator=generator,
|
187 |
+
output_type=output_type,
|
188 |
+
return_dict=return_dict,
|
189 |
+
callback=callback,
|
190 |
+
callback_steps=callback_steps,
|
191 |
+
)
|
192 |
+
|
193 |
+
@torch.no_grad()
|
194 |
+
def text2img(
|
195 |
+
self,
|
196 |
+
prompt: Union[str, List[str]],
|
197 |
+
height: int = 512,
|
198 |
+
width: int = 512,
|
199 |
+
num_inference_steps: int = 50,
|
200 |
+
guidance_scale: float = 7.5,
|
201 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
202 |
+
num_images_per_prompt: Optional[int] = 1,
|
203 |
+
eta: float = 0.0,
|
204 |
+
generator: Optional[torch.Generator] = None,
|
205 |
+
latents: Optional[torch.FloatTensor] = None,
|
206 |
+
output_type: Optional[str] = "pil",
|
207 |
+
return_dict: bool = True,
|
208 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
209 |
+
callback_steps: Optional[int] = 1,
|
210 |
+
):
|
211 |
+
# For more information on how this function https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion#diffusers.StableDiffusionPipeline
|
212 |
+
return StableDiffusionPipeline(**self.components)(
|
213 |
+
prompt=prompt,
|
214 |
+
height=height,
|
215 |
+
width=width,
|
216 |
+
num_inference_steps=num_inference_steps,
|
217 |
+
guidance_scale=guidance_scale,
|
218 |
+
negative_prompt=negative_prompt,
|
219 |
+
num_images_per_prompt=num_images_per_prompt,
|
220 |
+
eta=eta,
|
221 |
+
generator=generator,
|
222 |
+
latents=latents,
|
223 |
+
output_type=output_type,
|
224 |
+
return_dict=return_dict,
|
225 |
+
callback=callback,
|
226 |
+
callback_steps=callback_steps,
|
227 |
+
)
|
v0.11.0/text_inpainting.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import PIL
|
6 |
+
from diffusers.configuration_utils import FrozenDict
|
7 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
8 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
9 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
|
10 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
11 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
12 |
+
from diffusers.utils import deprecate, is_accelerate_available, logging
|
13 |
+
from transformers import (
|
14 |
+
CLIPFeatureExtractor,
|
15 |
+
CLIPSegForImageSegmentation,
|
16 |
+
CLIPSegProcessor,
|
17 |
+
CLIPTextModel,
|
18 |
+
CLIPTokenizer,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
class TextInpainting(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
Pipeline for text based inpainting using Stable Diffusion.
|
28 |
+
Uses CLIPSeg to get a mask from the given text, then calls the Inpainting pipeline with the generated mask
|
29 |
+
|
30 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
31 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
32 |
+
|
33 |
+
Args:
|
34 |
+
segmentation_model ([`CLIPSegForImageSegmentation`]):
|
35 |
+
CLIPSeg Model to generate mask from the given text. Please refer to the [model card]() for details.
|
36 |
+
segmentation_processor ([`CLIPSegProcessor`]):
|
37 |
+
CLIPSeg processor to get image, text features to translate prompt to English, if necessary. Please refer to the
|
38 |
+
[model card](https://huggingface.co/docs/transformers/model_doc/clipseg) for details.
|
39 |
+
vae ([`AutoencoderKL`]):
|
40 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
41 |
+
text_encoder ([`CLIPTextModel`]):
|
42 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
43 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
44 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
45 |
+
tokenizer (`CLIPTokenizer`):
|
46 |
+
Tokenizer of class
|
47 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
48 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
49 |
+
scheduler ([`SchedulerMixin`]):
|
50 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
|
51 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
52 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
53 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
54 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
55 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
56 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
segmentation_model: CLIPSegForImageSegmentation,
|
62 |
+
segmentation_processor: CLIPSegProcessor,
|
63 |
+
vae: AutoencoderKL,
|
64 |
+
text_encoder: CLIPTextModel,
|
65 |
+
tokenizer: CLIPTokenizer,
|
66 |
+
unet: UNet2DConditionModel,
|
67 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
68 |
+
safety_checker: StableDiffusionSafetyChecker,
|
69 |
+
feature_extractor: CLIPFeatureExtractor,
|
70 |
+
):
|
71 |
+
super().__init__()
|
72 |
+
|
73 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
74 |
+
deprecation_message = (
|
75 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
76 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
77 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
78 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
79 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
80 |
+
" file"
|
81 |
+
)
|
82 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
83 |
+
new_config = dict(scheduler.config)
|
84 |
+
new_config["steps_offset"] = 1
|
85 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
86 |
+
|
87 |
+
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False:
|
88 |
+
deprecation_message = (
|
89 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration"
|
90 |
+
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make"
|
91 |
+
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to"
|
92 |
+
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face"
|
93 |
+
" Hub, it would be very nice if you could open a Pull request for the"
|
94 |
+
" `scheduler/scheduler_config.json` file"
|
95 |
+
)
|
96 |
+
deprecate("skip_prk_steps not set", "1.0.0", deprecation_message, standard_warn=False)
|
97 |
+
new_config = dict(scheduler.config)
|
98 |
+
new_config["skip_prk_steps"] = True
|
99 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
100 |
+
|
101 |
+
if safety_checker is None:
|
102 |
+
logger.warning(
|
103 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
104 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
105 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
106 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
107 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
108 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
109 |
+
)
|
110 |
+
|
111 |
+
self.register_modules(
|
112 |
+
segmentation_model=segmentation_model,
|
113 |
+
segmentation_processor=segmentation_processor,
|
114 |
+
vae=vae,
|
115 |
+
text_encoder=text_encoder,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
unet=unet,
|
118 |
+
scheduler=scheduler,
|
119 |
+
safety_checker=safety_checker,
|
120 |
+
feature_extractor=feature_extractor,
|
121 |
+
)
|
122 |
+
|
123 |
+
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
124 |
+
r"""
|
125 |
+
Enable sliced attention computation.
|
126 |
+
|
127 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
128 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
132 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
133 |
+
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
134 |
+
`attention_head_dim` must be a multiple of `slice_size`.
|
135 |
+
"""
|
136 |
+
if slice_size == "auto":
|
137 |
+
# half the attention head size is usually a good trade-off between
|
138 |
+
# speed and memory
|
139 |
+
slice_size = self.unet.config.attention_head_dim // 2
|
140 |
+
self.unet.set_attention_slice(slice_size)
|
141 |
+
|
142 |
+
def disable_attention_slicing(self):
|
143 |
+
r"""
|
144 |
+
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
145 |
+
back to computing attention in one step.
|
146 |
+
"""
|
147 |
+
# set slice_size = `None` to disable `attention slicing`
|
148 |
+
self.enable_attention_slicing(None)
|
149 |
+
|
150 |
+
def enable_sequential_cpu_offload(self):
|
151 |
+
r"""
|
152 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
153 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
154 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
155 |
+
"""
|
156 |
+
if is_accelerate_available():
|
157 |
+
from accelerate import cpu_offload
|
158 |
+
else:
|
159 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
160 |
+
|
161 |
+
device = torch.device("cuda")
|
162 |
+
|
163 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
|
164 |
+
if cpu_offloaded_model is not None:
|
165 |
+
cpu_offload(cpu_offloaded_model, device)
|
166 |
+
|
167 |
+
@property
|
168 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
169 |
+
def _execution_device(self):
|
170 |
+
r"""
|
171 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
172 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
173 |
+
hooks.
|
174 |
+
"""
|
175 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
176 |
+
return self.device
|
177 |
+
for module in self.unet.modules():
|
178 |
+
if (
|
179 |
+
hasattr(module, "_hf_hook")
|
180 |
+
and hasattr(module._hf_hook, "execution_device")
|
181 |
+
and module._hf_hook.execution_device is not None
|
182 |
+
):
|
183 |
+
return torch.device(module._hf_hook.execution_device)
|
184 |
+
return self.device
|
185 |
+
|
186 |
+
@torch.no_grad()
|
187 |
+
def __call__(
|
188 |
+
self,
|
189 |
+
prompt: Union[str, List[str]],
|
190 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
191 |
+
text: str,
|
192 |
+
height: int = 512,
|
193 |
+
width: int = 512,
|
194 |
+
num_inference_steps: int = 50,
|
195 |
+
guidance_scale: float = 7.5,
|
196 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
197 |
+
num_images_per_prompt: Optional[int] = 1,
|
198 |
+
eta: float = 0.0,
|
199 |
+
generator: Optional[torch.Generator] = None,
|
200 |
+
latents: Optional[torch.FloatTensor] = None,
|
201 |
+
output_type: Optional[str] = "pil",
|
202 |
+
return_dict: bool = True,
|
203 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
204 |
+
callback_steps: Optional[int] = 1,
|
205 |
+
**kwargs,
|
206 |
+
):
|
207 |
+
r"""
|
208 |
+
Function invoked when calling the pipeline for generation.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
prompt (`str` or `List[str]`):
|
212 |
+
The prompt or prompts to guide the image generation.
|
213 |
+
image (`PIL.Image.Image`):
|
214 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
215 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
216 |
+
text (`str``):
|
217 |
+
The text to use to generate the mask.
|
218 |
+
height (`int`, *optional*, defaults to 512):
|
219 |
+
The height in pixels of the generated image.
|
220 |
+
width (`int`, *optional*, defaults to 512):
|
221 |
+
The width in pixels of the generated image.
|
222 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
223 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
224 |
+
expense of slower inference.
|
225 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
226 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
227 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
228 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
229 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
230 |
+
usually at the expense of lower image quality.
|
231 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
232 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
233 |
+
if `guidance_scale` is less than `1`).
|
234 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
235 |
+
The number of images to generate per prompt.
|
236 |
+
eta (`float`, *optional*, defaults to 0.0):
|
237 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
238 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
239 |
+
generator (`torch.Generator`, *optional*):
|
240 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
241 |
+
deterministic.
|
242 |
+
latents (`torch.FloatTensor`, *optional*):
|
243 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
244 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
245 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
246 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
247 |
+
The output format of the generate image. Choose between
|
248 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
249 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
250 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
251 |
+
plain tuple.
|
252 |
+
callback (`Callable`, *optional*):
|
253 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
254 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
255 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
256 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
257 |
+
called at every step.
|
258 |
+
|
259 |
+
Returns:
|
260 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
261 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
262 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
263 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
264 |
+
(nsfw) content, according to the `safety_checker`.
|
265 |
+
"""
|
266 |
+
|
267 |
+
# We use the input text to generate the mask
|
268 |
+
inputs = self.segmentation_processor(
|
269 |
+
text=[text], images=[image], padding="max_length", return_tensors="pt"
|
270 |
+
).to(self.device)
|
271 |
+
outputs = self.segmentation_model(**inputs)
|
272 |
+
mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()
|
273 |
+
mask_pil = self.numpy_to_pil(mask)[0].resize(image.size)
|
274 |
+
|
275 |
+
# Run inpainting pipeline with the generated mask
|
276 |
+
inpainting_pipeline = StableDiffusionInpaintPipeline(
|
277 |
+
vae=self.vae,
|
278 |
+
text_encoder=self.text_encoder,
|
279 |
+
tokenizer=self.tokenizer,
|
280 |
+
unet=self.unet,
|
281 |
+
scheduler=self.scheduler,
|
282 |
+
safety_checker=self.safety_checker,
|
283 |
+
feature_extractor=self.feature_extractor,
|
284 |
+
)
|
285 |
+
return inpainting_pipeline(
|
286 |
+
prompt=prompt,
|
287 |
+
image=image,
|
288 |
+
mask_image=mask_pil,
|
289 |
+
height=height,
|
290 |
+
width=width,
|
291 |
+
num_inference_steps=num_inference_steps,
|
292 |
+
guidance_scale=guidance_scale,
|
293 |
+
negative_prompt=negative_prompt,
|
294 |
+
num_images_per_prompt=num_images_per_prompt,
|
295 |
+
eta=eta,
|
296 |
+
generator=generator,
|
297 |
+
latents=latents,
|
298 |
+
output_type=output_type,
|
299 |
+
return_dict=return_dict,
|
300 |
+
callback=callback,
|
301 |
+
callback_steps=callback_steps,
|
302 |
+
)
|
v0.11.0/wildcard_stable_diffusion.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import Callable, Dict, List, Optional, Union
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
13 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
|
14 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
15 |
+
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
16 |
+
from diffusers.utils import deprecate, logging
|
17 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
+
|
22 |
+
global_re_wildcard = re.compile(r"__([^_]*)__")
|
23 |
+
|
24 |
+
|
25 |
+
def get_filename(path: str):
|
26 |
+
# this doesn't work on Windows
|
27 |
+
return os.path.basename(path).split(".txt")[0]
|
28 |
+
|
29 |
+
|
30 |
+
def read_wildcard_values(path: str):
|
31 |
+
with open(path, encoding="utf8") as f:
|
32 |
+
return f.read().splitlines()
|
33 |
+
|
34 |
+
|
35 |
+
def grab_wildcard_values(wildcard_option_dict: Dict[str, List[str]] = {}, wildcard_files: List[str] = []):
|
36 |
+
for wildcard_file in wildcard_files:
|
37 |
+
filename = get_filename(wildcard_file)
|
38 |
+
read_values = read_wildcard_values(wildcard_file)
|
39 |
+
if filename not in wildcard_option_dict:
|
40 |
+
wildcard_option_dict[filename] = []
|
41 |
+
wildcard_option_dict[filename].extend(read_values)
|
42 |
+
return wildcard_option_dict
|
43 |
+
|
44 |
+
|
45 |
+
def replace_prompt_with_wildcards(
|
46 |
+
prompt: str, wildcard_option_dict: Dict[str, List[str]] = {}, wildcard_files: List[str] = []
|
47 |
+
):
|
48 |
+
new_prompt = prompt
|
49 |
+
|
50 |
+
# get wildcard options
|
51 |
+
wildcard_option_dict = grab_wildcard_values(wildcard_option_dict, wildcard_files)
|
52 |
+
|
53 |
+
for m in global_re_wildcard.finditer(new_prompt):
|
54 |
+
wildcard_value = m.group()
|
55 |
+
replace_value = random.choice(wildcard_option_dict[wildcard_value.strip("__")])
|
56 |
+
new_prompt = new_prompt.replace(wildcard_value, replace_value, 1)
|
57 |
+
|
58 |
+
return new_prompt
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
class WildcardStableDiffusionOutput(StableDiffusionPipelineOutput):
|
63 |
+
prompts: List[str]
|
64 |
+
|
65 |
+
|
66 |
+
class WildcardStableDiffusionPipeline(DiffusionPipeline):
|
67 |
+
r"""
|
68 |
+
Example Usage:
|
69 |
+
pipe = WildcardStableDiffusionPipeline.from_pretrained(
|
70 |
+
"CompVis/stable-diffusion-v1-4",
|
71 |
+
|
72 |
+
torch_dtype=torch.float16,
|
73 |
+
)
|
74 |
+
prompt = "__animal__ sitting on a __object__ wearing a __clothing__"
|
75 |
+
out = pipe(
|
76 |
+
prompt,
|
77 |
+
wildcard_option_dict={
|
78 |
+
"clothing":["hat", "shirt", "scarf", "beret"]
|
79 |
+
},
|
80 |
+
wildcard_files=["object.txt", "animal.txt"],
|
81 |
+
num_prompt_samples=1
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
Pipeline for text-to-image generation with wild cards using Stable Diffusion.
|
86 |
+
|
87 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
88 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
89 |
+
|
90 |
+
Args:
|
91 |
+
vae ([`AutoencoderKL`]):
|
92 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
93 |
+
text_encoder ([`CLIPTextModel`]):
|
94 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
95 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
96 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
97 |
+
tokenizer (`CLIPTokenizer`):
|
98 |
+
Tokenizer of class
|
99 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
100 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
101 |
+
scheduler ([`SchedulerMixin`]):
|
102 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
103 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
104 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
105 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
106 |
+
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
107 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
108 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
109 |
+
"""
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vae: AutoencoderKL,
|
114 |
+
text_encoder: CLIPTextModel,
|
115 |
+
tokenizer: CLIPTokenizer,
|
116 |
+
unet: UNet2DConditionModel,
|
117 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
118 |
+
safety_checker: StableDiffusionSafetyChecker,
|
119 |
+
feature_extractor: CLIPFeatureExtractor,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
124 |
+
deprecation_message = (
|
125 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
126 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
127 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
128 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
129 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
130 |
+
" file"
|
131 |
+
)
|
132 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
133 |
+
new_config = dict(scheduler.config)
|
134 |
+
new_config["steps_offset"] = 1
|
135 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
136 |
+
|
137 |
+
if safety_checker is None:
|
138 |
+
logger.warning(
|
139 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
140 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
141 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
142 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
143 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
144 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
145 |
+
)
|
146 |
+
|
147 |
+
self.register_modules(
|
148 |
+
vae=vae,
|
149 |
+
text_encoder=text_encoder,
|
150 |
+
tokenizer=tokenizer,
|
151 |
+
unet=unet,
|
152 |
+
scheduler=scheduler,
|
153 |
+
safety_checker=safety_checker,
|
154 |
+
feature_extractor=feature_extractor,
|
155 |
+
)
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def __call__(
|
159 |
+
self,
|
160 |
+
prompt: Union[str, List[str]],
|
161 |
+
height: int = 512,
|
162 |
+
width: int = 512,
|
163 |
+
num_inference_steps: int = 50,
|
164 |
+
guidance_scale: float = 7.5,
|
165 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
166 |
+
num_images_per_prompt: Optional[int] = 1,
|
167 |
+
eta: float = 0.0,
|
168 |
+
generator: Optional[torch.Generator] = None,
|
169 |
+
latents: Optional[torch.FloatTensor] = None,
|
170 |
+
output_type: Optional[str] = "pil",
|
171 |
+
return_dict: bool = True,
|
172 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
173 |
+
callback_steps: Optional[int] = 1,
|
174 |
+
wildcard_option_dict: Dict[str, List[str]] = {},
|
175 |
+
wildcard_files: List[str] = [],
|
176 |
+
num_prompt_samples: Optional[int] = 1,
|
177 |
+
**kwargs,
|
178 |
+
):
|
179 |
+
r"""
|
180 |
+
Function invoked when calling the pipeline for generation.
|
181 |
+
|
182 |
+
Args:
|
183 |
+
prompt (`str` or `List[str]`):
|
184 |
+
The prompt or prompts to guide the image generation.
|
185 |
+
height (`int`, *optional*, defaults to 512):
|
186 |
+
The height in pixels of the generated image.
|
187 |
+
width (`int`, *optional*, defaults to 512):
|
188 |
+
The width in pixels of the generated image.
|
189 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
190 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
191 |
+
expense of slower inference.
|
192 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
193 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
194 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
195 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
196 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
197 |
+
usually at the expense of lower image quality.
|
198 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
199 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
200 |
+
if `guidance_scale` is less than `1`).
|
201 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
202 |
+
The number of images to generate per prompt.
|
203 |
+
eta (`float`, *optional*, defaults to 0.0):
|
204 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
205 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
206 |
+
generator (`torch.Generator`, *optional*):
|
207 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
208 |
+
deterministic.
|
209 |
+
latents (`torch.FloatTensor`, *optional*):
|
210 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
211 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
212 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
213 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
214 |
+
The output format of the generate image. Choose between
|
215 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
216 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
217 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
218 |
+
plain tuple.
|
219 |
+
callback (`Callable`, *optional*):
|
220 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
221 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
222 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
223 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
224 |
+
called at every step.
|
225 |
+
wildcard_option_dict (Dict[str, List[str]]):
|
226 |
+
dict with key as `wildcard` and values as a list of possible replacements. For example if a prompt, "A __animal__ sitting on a chair". A wildcard_option_dict can provide possible values for "animal" like this: {"animal":["dog", "cat", "fox"]}
|
227 |
+
wildcard_files: (List[str])
|
228 |
+
List of filenames of txt files for wildcard replacements. For example if a prompt, "A __animal__ sitting on a chair". A file can be provided ["animal.txt"]
|
229 |
+
num_prompt_samples: int
|
230 |
+
Number of times to sample wildcards for each prompt provided
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
234 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
235 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
236 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
237 |
+
(nsfw) content, according to the `safety_checker`.
|
238 |
+
"""
|
239 |
+
|
240 |
+
if isinstance(prompt, str):
|
241 |
+
prompt = [
|
242 |
+
replace_prompt_with_wildcards(prompt, wildcard_option_dict, wildcard_files)
|
243 |
+
for i in range(num_prompt_samples)
|
244 |
+
]
|
245 |
+
batch_size = len(prompt)
|
246 |
+
elif isinstance(prompt, list):
|
247 |
+
prompt_list = []
|
248 |
+
for p in prompt:
|
249 |
+
for i in range(num_prompt_samples):
|
250 |
+
prompt_list.append(replace_prompt_with_wildcards(p, wildcard_option_dict, wildcard_files))
|
251 |
+
prompt = prompt_list
|
252 |
+
batch_size = len(prompt)
|
253 |
+
else:
|
254 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
255 |
+
|
256 |
+
if height % 8 != 0 or width % 8 != 0:
|
257 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
258 |
+
|
259 |
+
if (callback_steps is None) or (
|
260 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
261 |
+
):
|
262 |
+
raise ValueError(
|
263 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
264 |
+
f" {type(callback_steps)}."
|
265 |
+
)
|
266 |
+
|
267 |
+
# get prompt text embeddings
|
268 |
+
text_inputs = self.tokenizer(
|
269 |
+
prompt,
|
270 |
+
padding="max_length",
|
271 |
+
max_length=self.tokenizer.model_max_length,
|
272 |
+
return_tensors="pt",
|
273 |
+
)
|
274 |
+
text_input_ids = text_inputs.input_ids
|
275 |
+
|
276 |
+
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
|
277 |
+
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
|
278 |
+
logger.warning(
|
279 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
280 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
281 |
+
)
|
282 |
+
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
|
283 |
+
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
284 |
+
|
285 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
286 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
287 |
+
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
|
288 |
+
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
289 |
+
|
290 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
291 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
292 |
+
# corresponds to doing no classifier free guidance.
|
293 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
294 |
+
# get unconditional embeddings for classifier free guidance
|
295 |
+
if do_classifier_free_guidance:
|
296 |
+
uncond_tokens: List[str]
|
297 |
+
if negative_prompt is None:
|
298 |
+
uncond_tokens = [""] * batch_size
|
299 |
+
elif type(prompt) is not type(negative_prompt):
|
300 |
+
raise TypeError(
|
301 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
302 |
+
f" {type(prompt)}."
|
303 |
+
)
|
304 |
+
elif isinstance(negative_prompt, str):
|
305 |
+
uncond_tokens = [negative_prompt]
|
306 |
+
elif batch_size != len(negative_prompt):
|
307 |
+
raise ValueError(
|
308 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
309 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
310 |
+
" the batch size of `prompt`."
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
uncond_tokens = negative_prompt
|
314 |
+
|
315 |
+
max_length = text_input_ids.shape[-1]
|
316 |
+
uncond_input = self.tokenizer(
|
317 |
+
uncond_tokens,
|
318 |
+
padding="max_length",
|
319 |
+
max_length=max_length,
|
320 |
+
truncation=True,
|
321 |
+
return_tensors="pt",
|
322 |
+
)
|
323 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
324 |
+
|
325 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
326 |
+
seq_len = uncond_embeddings.shape[1]
|
327 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
|
328 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
|
329 |
+
|
330 |
+
# For classifier free guidance, we need to do two forward passes.
|
331 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
332 |
+
# to avoid doing two forward passes
|
333 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
334 |
+
|
335 |
+
# get the initial random noise unless the user supplied it
|
336 |
+
|
337 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
338 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
339 |
+
# However this currently doesn't work in `mps`.
|
340 |
+
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8)
|
341 |
+
latents_dtype = text_embeddings.dtype
|
342 |
+
if latents is None:
|
343 |
+
if self.device.type == "mps":
|
344 |
+
# randn does not exist on mps
|
345 |
+
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
346 |
+
self.device
|
347 |
+
)
|
348 |
+
else:
|
349 |
+
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
350 |
+
else:
|
351 |
+
if latents.shape != latents_shape:
|
352 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
353 |
+
latents = latents.to(self.device)
|
354 |
+
|
355 |
+
# set timesteps
|
356 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
357 |
+
|
358 |
+
# Some schedulers like PNDM have timesteps as arrays
|
359 |
+
# It's more optimized to move all timesteps to correct device beforehand
|
360 |
+
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
361 |
+
|
362 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
363 |
+
latents = latents * self.scheduler.init_noise_sigma
|
364 |
+
|
365 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
366 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
367 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
368 |
+
# and should be between [0, 1]
|
369 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
370 |
+
extra_step_kwargs = {}
|
371 |
+
if accepts_eta:
|
372 |
+
extra_step_kwargs["eta"] = eta
|
373 |
+
|
374 |
+
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
375 |
+
# expand the latents if we are doing classifier free guidance
|
376 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
377 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
378 |
+
|
379 |
+
# predict the noise residual
|
380 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
381 |
+
|
382 |
+
# perform guidance
|
383 |
+
if do_classifier_free_guidance:
|
384 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
385 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
386 |
+
|
387 |
+
# compute the previous noisy sample x_t -> x_t-1
|
388 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
389 |
+
|
390 |
+
# call the callback, if provided
|
391 |
+
if callback is not None and i % callback_steps == 0:
|
392 |
+
callback(i, t, latents)
|
393 |
+
|
394 |
+
latents = 1 / 0.18215 * latents
|
395 |
+
image = self.vae.decode(latents).sample
|
396 |
+
|
397 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
398 |
+
|
399 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
400 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
401 |
+
|
402 |
+
if self.safety_checker is not None:
|
403 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
404 |
+
self.device
|
405 |
+
)
|
406 |
+
image, has_nsfw_concept = self.safety_checker(
|
407 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
408 |
+
)
|
409 |
+
else:
|
410 |
+
has_nsfw_concept = None
|
411 |
+
|
412 |
+
if output_type == "pil":
|
413 |
+
image = self.numpy_to_pil(image)
|
414 |
+
|
415 |
+
if not return_dict:
|
416 |
+
return (image, has_nsfw_concept)
|
417 |
+
|
418 |
+
return WildcardStableDiffusionOutput(images=image, nsfw_content_detected=has_nsfw_concept, prompts=prompt)
|