Datasets:
albertvillanova
HF staff
Host head_qa data on the Hub and fix NonMatchingChecksumError (#4588)
3f6b204
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning""" | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{vilares-gomez-rodriguez-2019-head, | |
title = "{HEAD}-{QA}: A Healthcare Dataset for Complex Reasoning", | |
author = "Vilares, David and | |
G{\'o}mez-Rodr{\'i}guez, Carlos", | |
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", | |
month = jul, | |
year = "2019", | |
address = "Florence, Italy", | |
publisher = "Association for Computational Linguistics", | |
url = "https://www.aclweb.org/anthology/P19-1092", | |
doi = "10.18653/v1/P19-1092", | |
pages = "960--966", | |
abstract = "We present HEAD-QA, a multi-choice question answering testbed to encourage research on complex reasoning. The questions come from exams to access a specialized position in the Spanish healthcare system, and are challenging even for highly specialized humans. We then consider monolingual (Spanish) and cross-lingual (to English) experiments with information retrieval and neural techniques. We show that: (i) HEAD-QA challenges current methods, and (ii) the results lag well behind human performance, demonstrating its usefulness as a benchmark for future work.", | |
} | |
""" | |
_DESCRIPTION = """\ | |
HEAD-QA is a multi-choice HEAlthcare Dataset. The questions come from exams to access a specialized position in the | |
Spanish healthcare system, and are challenging even for highly specialized humans. They are designed by the Ministerio | |
de Sanidad, Consumo y Bienestar Social. | |
The dataset contains questions about the following topics: medicine, nursing, psychology, chemistry, pharmacology and biology. | |
""" | |
_HOMEPAGE = "https://aghie.github.io/head-qa/" | |
_LICENSE = "MIT License" | |
_REPO = "https://huggingface.co/datasets/head_qa/resolve/main/data" | |
_URL = f"{_REPO}/head-qa-es-en-pdfs.zip" | |
_DIRS = {"es": "HEAD", "en": "HEAD_EN"} | |
class HeadQA(datasets.GeneratorBasedBuilder): | |
"""HEAD-QA: A Healthcare Dataset for Complex Reasoning""" | |
VERSION = datasets.Version("1.1.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="es", version=VERSION, description="Spanish HEAD dataset"), | |
datasets.BuilderConfig(name="en", version=VERSION, description="English HEAD dataset"), | |
] | |
DEFAULT_CONFIG_NAME = "es" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"name": datasets.Value("string"), | |
"year": datasets.Value("string"), | |
"category": datasets.Value("string"), | |
"qid": datasets.Value("int32"), | |
"qtext": datasets.Value("string"), | |
"ra": datasets.Value("int32"), | |
"image": datasets.Image(), | |
"answers": [ | |
{ | |
"aid": datasets.Value("int32"), | |
"atext": datasets.Value("string"), | |
} | |
], | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_URL) | |
dir = _DIRS[self.config.name] | |
data_lang_dir = os.path.join(data_dir, dir) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"train_{dir}.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"test_{dir}.json")}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"data_dir": data_dir, "filepath": os.path.join(data_lang_dir, f"dev_{dir}.json")}, | |
), | |
] | |
def _generate_examples(self, data_dir, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
head_qa = json.load(f) | |
for exam_id, exam in enumerate(head_qa["exams"]): | |
content = head_qa["exams"][exam] | |
name = content["name"].strip() | |
year = content["year"].strip() | |
category = content["category"].strip() | |
for question in content["data"]: | |
qid = int(question["qid"].strip()) | |
qtext = question["qtext"].strip() | |
ra = int(question["ra"].strip()) | |
image_path = question["image"].strip() | |
aids = [answer["aid"] for answer in question["answers"]] | |
atexts = [answer["atext"].strip() for answer in question["answers"]] | |
answers = [{"aid": aid, "atext": atext} for aid, atext in zip(aids, atexts)] | |
id_ = f"{exam_id}_{qid}" | |
yield id_, { | |
"name": name, | |
"year": year, | |
"category": category, | |
"qid": qid, | |
"qtext": qtext, | |
"ra": ra, | |
"image": os.path.join(data_dir, image_path) if image_path else None, | |
"answers": answers, | |
} | |