Datasets:
Tasks:
Question Answering
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
100K<n<1M
ArXiv:
License:
Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
- README.md +1 -0
- wiki_movies.py +18 -24
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
annotations_creators:
|
3 |
- crowdsourced
|
4 |
language_creators:
|
|
|
1 |
---
|
2 |
+
pretty_name: WikiMovies
|
3 |
annotations_creators:
|
4 |
- crowdsourced
|
5 |
language_creators:
|
wiki_movies.py
CHANGED
@@ -17,8 +17,6 @@ It was built with the following goals in mind: (i) machine learning techniques s
|
|
17 |
"""
|
18 |
|
19 |
|
20 |
-
import os
|
21 |
-
|
22 |
import datasets
|
23 |
|
24 |
|
@@ -85,49 +83,45 @@ class WikiMovies(datasets.GeneratorBasedBuilder):
|
|
85 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
86 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
87 |
my_urls = _URLs[self.config.name]
|
88 |
-
|
89 |
return [
|
90 |
datasets.SplitGenerator(
|
91 |
name=datasets.Split.TRAIN,
|
92 |
# These kwargs will be passed to _generate_examples
|
93 |
gen_kwargs={
|
94 |
-
"filepath":
|
95 |
-
|
96 |
-
),
|
97 |
-
"split": "train",
|
98 |
},
|
99 |
),
|
100 |
datasets.SplitGenerator(
|
101 |
name=datasets.Split.TEST,
|
102 |
# These kwargs will be passed to _generate_examples
|
103 |
gen_kwargs={
|
104 |
-
"filepath":
|
105 |
-
|
106 |
-
),
|
107 |
-
"split": "test",
|
108 |
},
|
109 |
),
|
110 |
datasets.SplitGenerator(
|
111 |
name=datasets.Split.VALIDATION,
|
112 |
# These kwargs will be passed to _generate_examples
|
113 |
gen_kwargs={
|
114 |
-
"filepath":
|
115 |
-
|
116 |
-
),
|
117 |
-
"split": "dev",
|
118 |
},
|
119 |
),
|
120 |
]
|
121 |
|
122 |
-
def _generate_examples(self, filepath,
|
123 |
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
124 |
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
17 |
"""
|
18 |
|
19 |
|
|
|
|
|
20 |
import datasets
|
21 |
|
22 |
|
|
|
83 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
84 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
85 |
my_urls = _URLs[self.config.name]
|
86 |
+
archive = dl_manager.download(my_urls)
|
87 |
return [
|
88 |
datasets.SplitGenerator(
|
89 |
name=datasets.Split.TRAIN,
|
90 |
# These kwargs will be passed to _generate_examples
|
91 |
gen_kwargs={
|
92 |
+
"filepath": "/".join(["movieqa", "questions", "wiki_entities", "wiki-entities_qa_train.txt"]),
|
93 |
+
"files": dl_manager.iter_archive(archive),
|
|
|
|
|
94 |
},
|
95 |
),
|
96 |
datasets.SplitGenerator(
|
97 |
name=datasets.Split.TEST,
|
98 |
# These kwargs will be passed to _generate_examples
|
99 |
gen_kwargs={
|
100 |
+
"filepath": "/".join(["movieqa", "questions", "wiki_entities", "wiki-entities_qa_test.txt"]),
|
101 |
+
"files": dl_manager.iter_archive(archive),
|
|
|
|
|
102 |
},
|
103 |
),
|
104 |
datasets.SplitGenerator(
|
105 |
name=datasets.Split.VALIDATION,
|
106 |
# These kwargs will be passed to _generate_examples
|
107 |
gen_kwargs={
|
108 |
+
"filepath": "/".join(["movieqa", "questions", "wiki_entities", "wiki-entities_qa_dev.txt"]),
|
109 |
+
"files": dl_manager.iter_archive(archive),
|
|
|
|
|
110 |
},
|
111 |
),
|
112 |
]
|
113 |
|
114 |
+
def _generate_examples(self, filepath, files):
|
115 |
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
|
116 |
# The key is not important, it's more here for legacy reason (legacy from tfds)
|
117 |
|
118 |
+
for path, f in files:
|
119 |
+
if path == filepath:
|
120 |
+
for id_, row in enumerate(f):
|
121 |
+
tmp_data = row.decode("utf-8").split("\t")
|
122 |
+
tmp_question = tmp_data[0][1:]
|
123 |
+
yield id_, {
|
124 |
+
"question": tmp_question,
|
125 |
+
"answer": tmp_data[1],
|
126 |
+
}
|
127 |
+
break
|