File size: 8,425 Bytes
50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 50ce175 beb3616 8855735 beb3616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PAWS, a dataset for paraphrase identification"""
import csv
import datasets
_CITATION = """\
@InProceedings{paws2019naacl,
title = {{PAWS: Paraphrase Adversaries from Word Scrambling}},
author = {Zhang, Yuan and Baldridge, Jason and He, Luheng},
booktitle = {Proc. of NAACL},
year = {2019}
}
"""
_DESCRIPTION = """\
PAWS: Paraphrase Adversaries from Word Scrambling
This dataset contains 108,463 human-labeled and 656k noisily labeled pairs that feature
the importance of modeling structure, context, and word order information for the problem
of paraphrase identification. The dataset has two subsets, one based on Wikipedia and the
other one based on the Quora Question Pairs (QQP) dataset.
For further details, see the accompanying paper: PAWS: Paraphrase Adversaries from Word Scrambling
(https://arxiv.org/abs/1904.01130)
PAWS-QQP is not available due to license of QQP. It must be reconstructed by downloading the original
data and then running our scripts to produce the data and attach the labels.
NOTE: There might be some missing or wrong labels in the dataset and we have replaced them with -1.
"""
_HOMEPAGE = "https://github.com/google-research-datasets/paws"
_LICENSE = 'The dataset may be freely used for any purpose, although acknowledgement of Google LLC ("Google") as the data source would be appreciated. The dataset is provided "AS IS" without any warranty, express or implied. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.'
_DATA_OPTIONS = [
"labeled_final",
"labeled_swap",
"unlabeled_final",
]
class PAWSConfig(datasets.BuilderConfig):
"""BuilderConfig for PAWS."""
def __init__(self, **kwargs):
"""Constructs a PAWSConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PAWSConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs),
class PAWS(datasets.GeneratorBasedBuilder):
"""PAWS, a dataset for paraphrase identification"""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
PAWSConfig(
name=config_name,
description=(f"This config contains samples of {config_name}."),
)
for config_name in _DATA_OPTIONS
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=["0", "1"]),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
_DATA_URL = f"https://storage.googleapis.com/paws/english/paws_wiki_{self.config.name}.tar.gz"
archive = dl_manager.download(_DATA_URL)
if self.config.name == "labeled_final":
_TRAIN_FILE_NAME = "/".join(["final", "train.tsv"])
_VAL_FILE_NAME = "/".join(["final", "dev.tsv"])
_TEST_FILE_NAME = "/".join(["final", "test.tsv"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _TRAIN_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _TEST_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _VAL_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
]
elif self.config.name == "labeled_swap":
_TRAIN_FILE_NAME = "/".join(["swap", "train.tsv"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _TRAIN_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
]
elif self.config.name == "unlabeled_final":
_TRAIN_FILE_NAME = "/".join(["unlabeled", "final", "train.tsv"])
_VAL_FILE_NAME = "/".join(["unlabeled", "final", "dev.tsv"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _TRAIN_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _VAL_FILE_NAME,
"files": dl_manager.iter_archive(archive),
},
),
]
else:
raise NotImplementedError(f"{self.config.name} does not exist")
def _generate_examples(self, filepath, files):
"""Yields examples."""
for path, f in files:
if path == filepath:
lines = (line.decode("utf-8") for line in f)
data = csv.DictReader(lines, delimiter="\t")
for id_, row in enumerate(data):
if self.config.name != "unlabeled_final":
if row["label"] not in ["0", "1"]:
row["label"] = -1
yield id_, {
"id": row["id"],
"sentence1": row["sentence1"],
"sentence2": row["sentence2"],
"label": row["label"],
}
else:
if row["noisy_label"] not in ["0", "1"]:
row["noisy_label"] = -1
yield id_, {
"id": row["id"],
"sentence1": row["sentence1"],
"sentence2": row["sentence2"],
"label": row["noisy_label"],
}
break
|