mapa / convert_to_hf_dataset.py
joelniklaus's picture
added first version of mapa dataset
796f4bd
raw
history blame
8.11 kB
import os
from glob import glob
from pathlib import Path
import numpy as np
import pandas as pd
from web_anno_tsv import open_web_anno_tsv
from web_anno_tsv.web_anno_tsv import ReadException, Annotation
pd.set_option('display.max_colwidth', None)
pd.set_option('display.max_columns', None)
annotation_labels = {'ADDRESS': ['building', 'city', 'country', 'place', 'postcode', 'street', 'territory'],
'AMOUNT': ['unit', 'value'],
'DATE': ['year', 'standard abbreviation', 'month', 'day of the week', 'day', 'calender event'],
'PERSON': ['age', 'email', 'ethnic category', 'family name', 'financial', 'given name – female',
'given name – male',
'health insurance number', 'id document number', 'initial name', 'marital status',
'medical record number',
'nationality', 'profession', 'role', 'social security number', 'title', 'url'],
'ORGANISATION': [],
'TIME': [],
'VEHICLE': ['build year', 'colour', 'license plate number', 'model', 'type']}
# make all coarse_grained upper case and all fine_grained lower case
annotation_labels = {key.upper(): [label.lower() for label in labels] for key, labels in annotation_labels.items()}
print(annotation_labels)
base_path = Path("extracted")
# TODO future work can add these datasets too to make it larger
special_paths = {
"EL": ["EL/ANNOTATED_DATA/LEGAL/AREIOSPAGOS1/annotated/full_dataset"],
"EN": ["EN/ANNOTATED_DATA/ADMINISTRATIVE-LEGAL/annotated/full_dataset"],
"FR": ["FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Civil",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Commercial",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION1/annotated/full_dataset/Criminal",
"FR/ANNOTATED_DATA/LEGAL/COUR_CASSATION2/annotated/full_dataset",
"FR/ANNOTATED_DATA/MEDICAL/CAS1/annotated/full_dataset"],
"IT": ["IT/ANNOTATED_DATA/Corte_Suprema_di_Cassazione/annotated"],
"MT": ["MT/ANNOTATED_DATA/ADMINISTRATIVE/annotated/full_dataset",
"MT/ANNOTATED_DATA/GENERAL_NEWS/News_1/annotated/full_dataset",
"MT/ANNOTATED_DATA/LEGAL/Jurisprudence_1/annotated/full_dataset"],
}
def get_path(language):
return base_path / language / "ANNOTATED_DATA/EUR_LEX/annotated/full_dataset"
def get_coarse_grained_for_fine_grained(label):
for coarse_grained, fine_grained_set in annotation_labels.items():
if label in fine_grained_set:
return coarse_grained
return None # raise ValueError(f"Did not find fine_grained label {label}")
def is_fine_grained(label):
for coarse_grained, fine_grained_set in annotation_labels.items():
if label.lower() in fine_grained_set:
return True
return False
def is_coarse_grained(label):
return label.upper() in annotation_labels.keys()
class HashableAnnotation(Annotation):
def __init__(self, annotation):
super()
self.label = annotation.label
self.start = annotation.start
self.stop = annotation.stop
self.text = annotation.text
def __eq__(self, other):
return self.label == other.label and self.start == other.start and self.stop == other.stop and self.text == other.text
def __hash__(self):
return hash(('label', self.label, 'start', self.start, 'stop', self.stop, 'text', self.text))
def get_token_annotations(token, annotations):
annotations = list(dict.fromkeys([HashableAnnotation(ann) for ann in annotations])) # remove duplicate annotations
coarse_grained = "O"
fine_grained = "o"
for annotation in annotations:
label = annotation.label
# if token.start == annotation.start and token.stop == annotation.stop: # fine_grained annotation
if token.start >= annotation.start and token.stop <= annotation.stop: # course_grained annotation
# we don't support multilabel annotations for each token for simplicity.
# So when a token already has an annotation for either coarse or fine grained, we don't assign new ones.
if coarse_grained != "O" and is_coarse_grained(label):
coarse_grained = label
elif fine_grained != "o" and is_fine_grained(label):
# some DATE are mislabeled as day but it is hard to correct this. So we ignore it
fine_grained = label
return coarse_grained.upper(), fine_grained.lower()
def get_annotated_sentence(result_sentence, sentence):
result_sentence["tokens"] = []
result_sentence["coarse_grained"] = []
result_sentence["fine_grained"] = []
for k, token in enumerate(sentence.tokens):
coarse_grained, fine_grained = get_token_annotations(token, sentence.annotations)
token = token.text.replace(u'\xa0', u' ').strip() # replace non-breaking spaces
if token: # remove empty tokens (only consisted of whitespace before
result_sentence["tokens"].append(token)
result_sentence["coarse_grained"].append(coarse_grained)
result_sentence["fine_grained"].append(fine_grained)
return result_sentence
languages = sorted([Path(file).stem for file in glob(str(base_path / "*"))])
def parse_files(language):
data_path = get_path(language.upper())
result_sentences = []
not_parsable_files = 0
file_names = sorted(list(glob(str(data_path / "*.tsv"))))
for file in file_names:
try:
with open_web_anno_tsv(file) as f:
for i, sentence in enumerate(f):
result_sentence = {"language": language, "type": "EUR-LEX",
"file_name": Path(file).stem, "sentence_number": i}
result_sentence = get_annotated_sentence(result_sentence, sentence)
result_sentences.append(result_sentence)
print(f"Successfully parsed file {file}")
except ReadException as e:
print(f"Could not parse file {file}")
not_parsable_files += 1
print("Not parsable files: ", not_parsable_files)
return pd.DataFrame(result_sentences), not_parsable_files
stats = []
train_dfs, validation_dfs, test_dfs = [], [], []
for language in languages:
language = language.lower()
print(f"Parsing language {language}")
df, not_parsable_files = parse_files(language)
file_names = df.file_name.unique()
# split by file_name
num_fn = len(file_names)
train_fn, validation_fn, test_fn = np.split(np.array(file_names), [int(.8 * num_fn), int(.9 * num_fn)])
lang_train = df[df.file_name.isin(train_fn)]
lang_validation = df[df.file_name.isin(validation_fn)]
lang_test = df[df.file_name.isin(test_fn)]
train_dfs.append(lang_train)
validation_dfs.append(lang_validation)
test_dfs.append(lang_test)
lang_stats = {"language": language}
lang_stats["# train files"] = len(train_fn)
lang_stats["# validation files"] = len(validation_fn)
lang_stats["# test files"] = len(test_fn)
lang_stats["# train sentences"] = len(lang_train.index)
lang_stats["# validation sentences"] = len(lang_validation.index)
lang_stats["# test sentences"] = len(lang_test.index)
stats.append(lang_stats)
stat_df = pd.DataFrame(stats)
print(stat_df.to_markdown(index=False))
train = pd.concat(train_dfs)
validation = pd.concat(validation_dfs)
test = pd.concat(test_dfs)
# save splits
def save_splits_to_jsonl(config_name):
# save to jsonl files for huggingface
if config_name: os.makedirs(config_name, exist_ok=True)
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
save_splits_to_jsonl("")