|
extends Node |
|
|
|
|
|
|
|
enum ControlModes { HUMAN, TRAINING, ONNX_INFERENCE } |
|
@export var control_mode: ControlModes = ControlModes.TRAINING |
|
@export_range(1, 10, 1, "or_greater") var action_repeat := 8 |
|
@export_range(0, 10, 0.1, "or_greater") var speed_up := 1.0 |
|
@export var onnx_model_path := "" |
|
|
|
|
|
var onnx_models: Dictionary |
|
|
|
@onready var start_time = Time.get_ticks_msec() |
|
|
|
const MAJOR_VERSION := "0" |
|
const MINOR_VERSION := "7" |
|
const DEFAULT_PORT := "11008" |
|
const DEFAULT_SEED := "1" |
|
var stream: StreamPeerTCP = null |
|
var connected = false |
|
var message_center |
|
var should_connect = true |
|
|
|
var all_agents: Array |
|
var agents_training: Array |
|
var agents_inference: Array |
|
var agents_heuristic: Array |
|
|
|
|
|
var agent_demo_record: Node |
|
|
|
var expert_demo_save_path: String |
|
|
|
var demo_trajectories: Array |
|
|
|
var current_demo_trajectory: Array |
|
|
|
var need_to_send_obs = false |
|
var args = null |
|
var initialized = false |
|
var just_reset = false |
|
var onnx_model = null |
|
var n_action_steps = 0 |
|
|
|
var _action_space: Dictionary |
|
var _action_space_inference: Array[Dictionary] = [] |
|
var _obs_space: Dictionary |
|
|
|
|
|
|
|
func _ready(): |
|
await get_tree().root.ready |
|
get_tree().set_pause(true) |
|
_initialize() |
|
await get_tree().create_timer(1.0).timeout |
|
get_tree().set_pause(false) |
|
|
|
|
|
func _initialize(): |
|
_get_agents() |
|
args = _get_args() |
|
Engine.physics_ticks_per_second = _get_speedup() * 60 |
|
Engine.time_scale = _get_speedup() * 1.0 |
|
prints( |
|
"physics ticks", |
|
Engine.physics_ticks_per_second, |
|
Engine.time_scale, |
|
_get_speedup(), |
|
speed_up |
|
) |
|
|
|
_set_heuristic("human", all_agents) |
|
|
|
_initialize_training_agents() |
|
_initialize_inference_agents() |
|
_initialize_demo_recording() |
|
|
|
_set_seed() |
|
_set_action_repeat() |
|
initialized = true |
|
|
|
|
|
func _initialize_training_agents(): |
|
if agents_training.size() > 0: |
|
_obs_space = agents_training[0].get_obs_space() |
|
_action_space = agents_training[0].get_action_space() |
|
connected = connect_to_server() |
|
if connected: |
|
_set_heuristic("model", agents_training) |
|
_handshake() |
|
_send_env_info() |
|
else: |
|
push_warning( |
|
"Couldn't connect to Python server, using human controls instead. ", |
|
"Did you start the training server using e.g. `gdrl` from the console?" |
|
) |
|
|
|
|
|
func _initialize_inference_agents(): |
|
if agents_inference.size() > 0: |
|
if control_mode == ControlModes.ONNX_INFERENCE: |
|
assert( |
|
FileAccess.file_exists(onnx_model_path), |
|
"Onnx Model Path set on Sync node does not exist: %s" % onnx_model_path |
|
) |
|
onnx_models[onnx_model_path] = ONNXModel.new(onnx_model_path, 1) |
|
|
|
for agent in agents_inference: |
|
_action_space_inference.append(agent.get_action_space()) |
|
|
|
var agent_onnx_model: ONNXModel |
|
if agent.onnx_model_path.is_empty(): |
|
assert( |
|
onnx_models.has(onnx_model_path), |
|
( |
|
"Node %s has no onnx model path set " % agent.get_path() |
|
+ "and sync node's control mode is not set to OnnxInference. " |
|
+ "Either add the path to the AIController, " |
|
+ "or if you want to use the path set on sync node instead, " |
|
+ "set control mode to OnnxInference." |
|
) |
|
) |
|
prints( |
|
"Info: AIController %s" % agent.get_path(), |
|
"has no onnx model path set.", |
|
"Using path set on the sync node instead." |
|
) |
|
agent_onnx_model = onnx_models[onnx_model_path] |
|
else: |
|
if not onnx_models.has(agent.onnx_model_path): |
|
assert( |
|
FileAccess.file_exists(agent.onnx_model_path), |
|
( |
|
"Onnx Model Path set on %s node does not exist: %s" |
|
% [agent.get_path(), agent.onnx_model_path] |
|
) |
|
) |
|
onnx_models[agent.onnx_model_path] = ONNXModel.new(agent.onnx_model_path, 1) |
|
agent_onnx_model = onnx_models[agent.onnx_model_path] |
|
|
|
agent.onnx_model = agent_onnx_model |
|
_set_heuristic("model", agents_inference) |
|
|
|
|
|
func _initialize_demo_recording(): |
|
if agent_demo_record: |
|
expert_demo_save_path = agent_demo_record.expert_demo_save_path |
|
assert( |
|
not expert_demo_save_path.is_empty(), |
|
"Expert demo save path set in %s is empty." % agent_demo_record.get_path() |
|
) |
|
|
|
InputMap.add_action("RemoveLastDemoEpisode") |
|
InputMap.action_add_event( |
|
"RemoveLastDemoEpisode", agent_demo_record.remove_last_episode_key |
|
) |
|
current_demo_trajectory.resize(2) |
|
current_demo_trajectory[0] = [] |
|
current_demo_trajectory[1] = [] |
|
agent_demo_record.heuristic = "demo_record" |
|
|
|
|
|
func _physics_process(_delta): |
|
|
|
|
|
|
|
_demo_record_process() |
|
|
|
if n_action_steps % action_repeat != 0: |
|
n_action_steps += 1 |
|
return |
|
|
|
n_action_steps += 1 |
|
|
|
_training_process() |
|
_inference_process() |
|
_heuristic_process() |
|
|
|
|
|
func _training_process(): |
|
if connected: |
|
get_tree().set_pause(true) |
|
|
|
if just_reset: |
|
just_reset = false |
|
var obs = _get_obs_from_agents(agents_training) |
|
|
|
var reply = {"type": "reset", "obs": obs} |
|
_send_dict_as_json_message(reply) |
|
|
|
get_tree().set_pause(false) |
|
return |
|
|
|
if need_to_send_obs: |
|
need_to_send_obs = false |
|
var reward = _get_reward_from_agents() |
|
var done = _get_done_from_agents() |
|
|
|
|
|
var obs = _get_obs_from_agents(agents_training) |
|
|
|
var reply = {"type": "step", "obs": obs, "reward": reward, "done": done} |
|
_send_dict_as_json_message(reply) |
|
|
|
var handled = handle_message() |
|
|
|
|
|
func _inference_process(): |
|
if agents_inference.size() > 0: |
|
var obs: Array = _get_obs_from_agents(agents_inference) |
|
var actions = [] |
|
|
|
for agent_id in range(0, agents_inference.size()): |
|
var action = agents_inference[agent_id].onnx_model.run_inference( |
|
obs[agent_id]["obs"], 1.0 |
|
) |
|
action["output"] = clamp_array(action["output"], -1.0, 1.0) |
|
var action_dict = _extract_action_dict( |
|
action["output"], _action_space_inference[agent_id] |
|
) |
|
actions.append(action_dict) |
|
|
|
_set_agent_actions(actions, agents_inference) |
|
_reset_agents_if_done(agents_inference) |
|
get_tree().set_pause(false) |
|
|
|
|
|
func _demo_record_process(): |
|
if not agent_demo_record: |
|
return |
|
|
|
if Input.is_action_just_pressed("RemoveLastDemoEpisode"): |
|
print("[Sync script][Demo recorder] Removing last recorded episode.") |
|
demo_trajectories.remove_at(demo_trajectories.size() - 1) |
|
print("Remaining episode count: %d" % demo_trajectories.size()) |
|
|
|
if n_action_steps % agent_demo_record.action_repeat != 0: |
|
return |
|
|
|
var obs_dict: Dictionary = agent_demo_record.get_obs() |
|
|
|
|
|
assert( |
|
obs_dict.has("obs"), |
|
"Demo recorder needs an 'obs' key in get_obs() returned dictionary to record obs from." |
|
) |
|
current_demo_trajectory[0].append(obs_dict.obs) |
|
|
|
|
|
agent_demo_record.set_action() |
|
var acts = agent_demo_record.get_action() |
|
|
|
var terminal = agent_demo_record.get_done() |
|
|
|
if terminal: |
|
agent_demo_record.set_done_false() |
|
else: |
|
current_demo_trajectory[1].append(acts) |
|
|
|
if terminal: |
|
|
|
demo_trajectories.append(current_demo_trajectory.duplicate(true)) |
|
print("[Sync script][Demo recorder] Recorded episode count: %d" % demo_trajectories.size()) |
|
current_demo_trajectory[0].clear() |
|
current_demo_trajectory[1].clear() |
|
|
|
|
|
func _heuristic_process(): |
|
for agent in agents_heuristic: |
|
_reset_agents_if_done(agents_heuristic) |
|
|
|
|
|
func _extract_action_dict(action_array: Array, action_space: Dictionary): |
|
var index = 0 |
|
var result = {} |
|
for key in action_space.keys(): |
|
var size = action_space[key]["size"] |
|
if action_space[key]["action_type"] == "discrete": |
|
result[key] = round(action_array[index]) |
|
else: |
|
result[key] = action_array.slice(index, index + size) |
|
index += size |
|
|
|
return result |
|
|
|
|
|
|
|
func _set_agent_mode(agent: Node): |
|
var agent_inherits_mode: bool = agent.control_mode == agent.ControlModes.INHERIT_FROM_SYNC |
|
|
|
if agent_inherits_mode: |
|
match control_mode: |
|
ControlModes.HUMAN: |
|
agent.control_mode = agent.ControlModes.HUMAN |
|
ControlModes.TRAINING: |
|
agent.control_mode = agent.ControlModes.TRAINING |
|
ControlModes.ONNX_INFERENCE: |
|
agent.control_mode = agent.ControlModes.ONNX_INFERENCE |
|
|
|
|
|
func _get_agents(): |
|
all_agents = get_tree().get_nodes_in_group("AGENT") |
|
for agent in all_agents: |
|
_set_agent_mode(agent) |
|
|
|
if agent.control_mode == agent.ControlModes.TRAINING: |
|
agents_training.append(agent) |
|
elif agent.control_mode == agent.ControlModes.ONNX_INFERENCE: |
|
agents_inference.append(agent) |
|
elif agent.control_mode == agent.ControlModes.HUMAN: |
|
agents_heuristic.append(agent) |
|
elif agent.control_mode == agent.ControlModes.RECORD_EXPERT_DEMOS: |
|
assert( |
|
not agent_demo_record, |
|
"Currently only a single AIController can be used for recording expert demos." |
|
) |
|
agent_demo_record = agent |
|
|
|
|
|
func _set_heuristic(heuristic, agents: Array): |
|
for agent in agents: |
|
agent.set_heuristic(heuristic) |
|
|
|
|
|
func _handshake(): |
|
print("performing handshake") |
|
|
|
var json_dict = _get_dict_json_message() |
|
assert(json_dict["type"] == "handshake") |
|
var major_version = json_dict["major_version"] |
|
var minor_version = json_dict["minor_version"] |
|
if major_version != MAJOR_VERSION: |
|
print("WARNING: major verison mismatch ", major_version, " ", MAJOR_VERSION) |
|
if minor_version != MINOR_VERSION: |
|
print("WARNING: minor verison mismatch ", minor_version, " ", MINOR_VERSION) |
|
|
|
print("handshake complete") |
|
|
|
|
|
func _get_dict_json_message(): |
|
|
|
|
|
while stream.get_available_bytes() == 0: |
|
stream.poll() |
|
if stream.get_status() != 2: |
|
print("server disconnected status, closing") |
|
get_tree().quit() |
|
return null |
|
|
|
OS.delay_usec(10) |
|
|
|
var message = stream.get_string() |
|
var json_data = JSON.parse_string(message) |
|
|
|
return json_data |
|
|
|
|
|
func _send_dict_as_json_message(dict): |
|
stream.put_string(JSON.stringify(dict, "", false)) |
|
|
|
|
|
func _send_env_info(): |
|
var json_dict = _get_dict_json_message() |
|
assert(json_dict["type"] == "env_info") |
|
|
|
var message = { |
|
"type": "env_info", |
|
"observation_space": _obs_space, |
|
"action_space": _action_space, |
|
"n_agents": len(agents_training) |
|
} |
|
_send_dict_as_json_message(message) |
|
|
|
|
|
func connect_to_server(): |
|
print("Waiting for one second to allow server to start") |
|
OS.delay_msec(1000) |
|
print("trying to connect to server") |
|
stream = StreamPeerTCP.new() |
|
|
|
|
|
var ip = "127.0.0.1" |
|
var port = _get_port() |
|
var connect = stream.connect_to_host(ip, port) |
|
stream.set_no_delay(true) |
|
stream.poll() |
|
|
|
while stream.get_status() < 2: |
|
stream.poll() |
|
return stream.get_status() == 2 |
|
|
|
|
|
func _get_args(): |
|
print("getting command line arguments") |
|
var arguments = {} |
|
for argument in OS.get_cmdline_args(): |
|
print(argument) |
|
if argument.find("=") > -1: |
|
var key_value = argument.split("=") |
|
arguments[key_value[0].lstrip("--")] = key_value[1] |
|
else: |
|
|
|
|
|
arguments[argument.lstrip("--")] = "" |
|
|
|
return arguments |
|
|
|
|
|
func _get_speedup(): |
|
print(args) |
|
return args.get("speedup", str(speed_up)).to_float() |
|
|
|
|
|
func _get_port(): |
|
return args.get("port", DEFAULT_PORT).to_int() |
|
|
|
|
|
func _set_seed(): |
|
var _seed = args.get("env_seed", DEFAULT_SEED).to_int() |
|
seed(_seed) |
|
|
|
|
|
func _set_action_repeat(): |
|
action_repeat = args.get("action_repeat", str(action_repeat)).to_int() |
|
|
|
|
|
func disconnect_from_server(): |
|
stream.disconnect_from_host() |
|
|
|
|
|
func handle_message() -> bool: |
|
|
|
var message = _get_dict_json_message() |
|
if message["type"] == "close": |
|
print("received close message, closing game") |
|
get_tree().quit() |
|
get_tree().set_pause(false) |
|
return true |
|
|
|
if message["type"] == "reset": |
|
print("resetting all agents") |
|
_reset_agents() |
|
just_reset = true |
|
get_tree().set_pause(false) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return true |
|
|
|
if message["type"] == "call": |
|
var method = message["method"] |
|
var returns = _call_method_on_agents(method) |
|
var reply = {"type": "call", "returns": returns} |
|
print("calling method from Python") |
|
_send_dict_as_json_message(reply) |
|
return handle_message() |
|
|
|
if message["type"] == "action": |
|
var action = message["action"] |
|
_set_agent_actions(action, agents_training) |
|
need_to_send_obs = true |
|
get_tree().set_pause(false) |
|
return true |
|
|
|
print("message was not handled") |
|
return false |
|
|
|
|
|
func _call_method_on_agents(method): |
|
var returns = [] |
|
for agent in all_agents: |
|
returns.append(agent.call(method)) |
|
|
|
return returns |
|
|
|
|
|
func _reset_agents_if_done(agents = all_agents): |
|
for agent in agents: |
|
if agent.get_done(): |
|
agent.set_done_false() |
|
|
|
|
|
func _reset_agents(agents = all_agents): |
|
for agent in agents: |
|
agent.needs_reset = true |
|
|
|
|
|
|
|
func _get_obs_from_agents(agents: Array = all_agents): |
|
var obs = [] |
|
for agent in agents: |
|
obs.append(agent.get_obs()) |
|
return obs |
|
|
|
|
|
func _get_reward_from_agents(agents: Array = agents_training): |
|
var rewards = [] |
|
for agent in agents: |
|
rewards.append(agent.get_reward()) |
|
agent.zero_reward() |
|
return rewards |
|
|
|
|
|
func _get_done_from_agents(agents: Array = agents_training): |
|
var dones = [] |
|
for agent in agents: |
|
var done = agent.get_done() |
|
if done: |
|
agent.set_done_false() |
|
dones.append(done) |
|
return dones |
|
|
|
|
|
func _set_agent_actions(actions, agents: Array = all_agents): |
|
for i in range(len(actions)): |
|
agents[i].set_action(actions[i]) |
|
|
|
|
|
func clamp_array(arr: Array, min: float, max: float): |
|
var output: Array = [] |
|
for a in arr: |
|
output.append(clamp(a, min, max)) |
|
return output |
|
|
|
|
|
|
|
func _notification(what): |
|
if demo_trajectories.size() == 0 or expert_demo_save_path.is_empty(): |
|
return |
|
|
|
if what == NOTIFICATION_PREDELETE: |
|
var json_string = JSON.stringify(demo_trajectories, "", false) |
|
var file = FileAccess.open(expert_demo_save_path, FileAccess.WRITE) |
|
|
|
if not file: |
|
var error: Error = FileAccess.get_open_error() |
|
assert(not error, "There was an error opening the file: %d" % error) |
|
|
|
file.store_line(json_string) |
|
var error = file.get_error() |
|
assert(not error, "There was an error after trying to write to the file: %d" % error) |
|
|