Datasets:

Languages:
Japanese
License:
ner-wikipedia-dataset / ner-wikipedia-dataset.py
Kosuke-Yamada's picture
modify how to import
6c07a79
raw
history blame
3.99 kB
from __future__ import annotations
import json
import random
from typing import Generator
import datasets
_CITATION = """
@inproceedings{omi-2021-wikipedia,
title = "Wikipediaを用いた日本語の固有表現抽出のデータセットの構築",
author = "近江 崇宏",
booktitle = "言語処理学会第27回年次大会",
year = "2021",
url = "https://anlp.jp/proceedings/annual_meeting/2021/pdf_dir/P2-7.pdf",
}
"""
_DESCRIPTION = "This is a dataset of Wikipedia articles with named entity labels created by Stockmark Inc."
_HOMEPAGE = "https://github.com/stockmarkteam/ner-wikipedia-dataset"
_LICENSE = "CC-BY-SA 3.0"
_URL = "https://raw.githubusercontent.com/stockmarkteam/ner-wikipedia-dataset/main/ner.json"
class NerWikipediaDatasetConfig(datasets.BuilderConfig):
def __init__(
self,
name: str = "default",
version: datasets.Version | str | None = datasets.Version("0.0.0"),
data_dir: str | None = None,
data_files: datasets.data_files.DataFilesDict | None = None,
description: str | None = _DESCRIPTION,
shuffle: bool = True,
seed: int = 42,
train_ratio: float = 0.8,
validation_ratio: float = 0.1,
) -> None:
super().__init__(
name=name,
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
self.shuffle = shuffle
self.seed = seed
self.train_ratio = train_ratio
self.validation_ratio = validation_ratio
class NerWikipediaDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = NerWikipediaDatasetConfig
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"curid": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"name": datasets.Value("string"),
"span": datasets.Sequence(
datasets.Value("int64"), length=2
),
"type": datasets.Value("string"),
}
],
}
),
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> list[datasets.SplitGenerator]:
dataset_dir = str(dl_manager.download_and_extract(_URL))
with open(dataset_dir, "r", encoding="utf-8") as f:
data = json.load(f)
if self.config.shuffle == True:
random.seed(self.config.seed)
random.shuffle(data)
num_data = len(data)
num_train_data = int(num_data * self.config.train_ratio)
num_validation_data = int(num_data * self.config.validation_ratio)
train_data = data[:num_train_data]
validation_data = data[num_train_data : num_train_data + num_validation_data]
test_data = data[num_train_data + num_validation_data :]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data": train_data},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data": validation_data},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data": test_data},
),
]
def _generate_examples(self, data: list[dict[str, str]]) -> Generator:
for i, d in enumerate(data):
yield i, {
"curid": d["curid"],
"text": d["text"],
"entities": d["entities"],
}