File size: 54,882 Bytes
8537242 9b7c23b 8537242 9b7c23b 7b55466 9b7c23b 7b55466 8537242 9b7c23b 8537242 9b7c23b 8537242 9b7c23b 8537242 9b7c23b 8537242 9b7c23b e18a102 b577163 5ea5863 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff b577163 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 3cc829a 3c89eff 2d9fb04 8537242 0d03fdb 8537242 9843332 8537242 9843332 8537242 0db3f6c 8537242 a63c355 1192627 8537242 1192627 8537242 0d03fdb 8537242 1192627 8537242 0d03fdb 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 1192627 8537242 0db3f6c 5ea5863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 |
---
annotations_creators:
- crowdsourced
- expert-generated
- found
- machine-generated
language_creators:
- crowdsourced
- expert-generated
- found
- machine-generated
language:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- it
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license:
- other
multilinguality:
- multilingual
- translation
size_categories:
- 100K<n<1M
- 10K<n<100K
source_datasets:
- extended|conll2003
- extended|squad
- extended|xnli
- original
task_categories:
- question-answering
- summarization
- text-classification
- text2text-generation
- token-classification
task_ids:
- acceptability-classification
- extractive-qa
- named-entity-recognition
- natural-language-inference
- news-articles-headline-generation
- open-domain-qa
- parsing
- topic-classification
pretty_name: XGLUE
license_details: Licence Universal Dependencies v2.5
tags:
- paraphrase-identification
- question-answering
dataset_info:
- config_name: ner
features:
- name: words
sequence: string
- name: ner
sequence:
class_label:
names:
'0': O
'1': B-PER
'2': I-PER
'3': B-ORG
'4': I-ORG
'5': B-LOC
'6': I-LOC
'7': B-MISC
'8': I-MISC
splits:
- name: train
num_bytes: 3445854
num_examples: 14042
- name: validation.en
num_bytes: 866569
num_examples: 3252
- name: validation.de
num_bytes: 917967
num_examples: 2874
- name: validation.es
num_bytes: 888551
num_examples: 1923
- name: validation.nl
num_bytes: 659144
num_examples: 2895
- name: test.en
num_bytes: 784976
num_examples: 3454
- name: test.de
num_bytes: 922741
num_examples: 3007
- name: test.es
num_bytes: 864804
num_examples: 1523
- name: test.nl
num_bytes: 1196660
num_examples: 5202
download_size: 875905871
dataset_size: 10547266
- config_name: pos
features:
- name: words
sequence: string
- name: pos
sequence:
class_label:
names:
'0': ADJ
'1': ADP
'2': ADV
'3': AUX
'4': CCONJ
'5': DET
'6': INTJ
'7': NOUN
'8': NUM
'9': PART
'10': PRON
'11': PROPN
'12': PUNCT
'13': SCONJ
'14': SYM
'15': VERB
'16': X
splits:
- name: train
num_bytes: 7279459
num_examples: 25376
- name: validation.en
num_bytes: 421410
num_examples: 2001
- name: validation.de
num_bytes: 219328
num_examples: 798
- name: validation.es
num_bytes: 620491
num_examples: 1399
- name: validation.nl
num_bytes: 198003
num_examples: 717
- name: validation.bg
num_bytes: 346802
num_examples: 1114
- name: validation.el
num_bytes: 229447
num_examples: 402
- name: validation.fr
num_bytes: 600964
num_examples: 1475
- name: validation.pl
num_bytes: 620694
num_examples: 2214
- name: validation.tr
num_bytes: 186196
num_examples: 987
- name: validation.vi
num_bytes: 203669
num_examples: 799
- name: validation.zh
num_bytes: 212579
num_examples: 499
- name: validation.ur
num_bytes: 284016
num_examples: 551
- name: validation.hi
num_bytes: 838700
num_examples: 1658
- name: validation.it
num_bytes: 198608
num_examples: 563
- name: validation.ar
num_bytes: 592943
num_examples: 908
- name: validation.ru
num_bytes: 261563
num_examples: 578
- name: validation.th
num_bytes: 272834
num_examples: 497
- name: test.en
num_bytes: 420613
num_examples: 2076
- name: test.de
num_bytes: 291759
num_examples: 976
- name: test.es
num_bytes: 200003
num_examples: 425
- name: test.nl
num_bytes: 193337
num_examples: 595
- name: test.bg
num_bytes: 339460
num_examples: 1115
- name: test.el
num_bytes: 235137
num_examples: 455
- name: test.fr
num_bytes: 166865
num_examples: 415
- name: test.pl
num_bytes: 600534
num_examples: 2214
- name: test.tr
num_bytes: 186519
num_examples: 982
- name: test.vi
num_bytes: 211408
num_examples: 799
- name: test.zh
num_bytes: 202055
num_examples: 499
- name: test.ur
num_bytes: 288189
num_examples: 534
- name: test.hi
num_bytes: 839659
num_examples: 1683
- name: test.it
num_bytes: 173861
num_examples: 481
- name: test.ar
num_bytes: 561709
num_examples: 679
- name: test.ru
num_bytes: 255393
num_examples: 600
- name: test.th
num_bytes: 272834
num_examples: 497
download_size: 875905871
dataset_size: 19027041
- config_name: mlqa
features:
- name: context
dtype: string
- name: question
dtype: string
- name: answers
sequence:
- name: answer_start
dtype: int32
- name: text
dtype: string
splits:
- name: train
num_bytes: 75307933
num_examples: 87599
- name: validation.en
num_bytes: 1255587
num_examples: 1148
- name: validation.de
num_bytes: 454258
num_examples: 512
- name: validation.ar
num_bytes: 785493
num_examples: 517
- name: validation.es
num_bytes: 388625
num_examples: 500
- name: validation.hi
num_bytes: 1092167
num_examples: 507
- name: validation.vi
num_bytes: 692227
num_examples: 511
- name: validation.zh
num_bytes: 411213
num_examples: 504
- name: test.en
num_bytes: 13264513
num_examples: 11590
- name: test.de
num_bytes: 4070659
num_examples: 4517
- name: test.ar
num_bytes: 7976090
num_examples: 5335
- name: test.es
num_bytes: 4044224
num_examples: 5253
- name: test.hi
num_bytes: 11385051
num_examples: 4918
- name: test.vi
num_bytes: 7559078
num_examples: 5495
- name: test.zh
num_bytes: 4092921
num_examples: 5137
download_size: 875905871
dataset_size: 132780039
- config_name: nc
features:
- name: news_title
dtype: string
- name: news_body
dtype: string
- name: news_category
dtype:
class_label:
names:
'0': foodanddrink
'1': sports
'2': travel
'3': finance
'4': lifestyle
'5': news
'6': entertainment
'7': health
'8': video
'9': autos
splits:
- name: train
num_bytes: 280615806
num_examples: 100000
- name: validation.en
num_bytes: 33389140
num_examples: 10000
- name: validation.de
num_bytes: 26757254
num_examples: 10000
- name: validation.es
num_bytes: 31781308
num_examples: 10000
- name: validation.fr
num_bytes: 27154099
num_examples: 10000
- name: validation.ru
num_bytes: 46053007
num_examples: 10000
- name: test.en
num_bytes: 34437987
num_examples: 10000
- name: test.de
num_bytes: 26632007
num_examples: 10000
- name: test.es
num_bytes: 31350078
num_examples: 10000
- name: test.fr
num_bytes: 27589545
num_examples: 10000
- name: test.ru
num_bytes: 46183830
num_examples: 10000
download_size: 875905871
dataset_size: 611944061
- config_name: xnli
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
splits:
- name: train
num_bytes: 74444346
num_examples: 392702
- name: validation.en
num_bytes: 433471
num_examples: 2490
- name: validation.ar
num_bytes: 633009
num_examples: 2490
- name: validation.bg
num_bytes: 774069
num_examples: 2490
- name: validation.de
num_bytes: 494612
num_examples: 2490
- name: validation.el
num_bytes: 841234
num_examples: 2490
- name: validation.es
num_bytes: 478430
num_examples: 2490
- name: validation.fr
num_bytes: 510112
num_examples: 2490
- name: validation.hi
num_bytes: 1023923
num_examples: 2490
- name: validation.ru
num_bytes: 786450
num_examples: 2490
- name: validation.sw
num_bytes: 429858
num_examples: 2490
- name: validation.th
num_bytes: 1061168
num_examples: 2490
- name: validation.tr
num_bytes: 459316
num_examples: 2490
- name: validation.ur
num_bytes: 699960
num_examples: 2490
- name: validation.vi
num_bytes: 590688
num_examples: 2490
- name: validation.zh
num_bytes: 384859
num_examples: 2490
- name: test.en
num_bytes: 875142
num_examples: 5010
- name: test.ar
num_bytes: 1294561
num_examples: 5010
- name: test.bg
num_bytes: 1573042
num_examples: 5010
- name: test.de
num_bytes: 996487
num_examples: 5010
- name: test.el
num_bytes: 1704793
num_examples: 5010
- name: test.es
num_bytes: 969821
num_examples: 5010
- name: test.fr
num_bytes: 1029247
num_examples: 5010
- name: test.hi
num_bytes: 2073081
num_examples: 5010
- name: test.ru
num_bytes: 1603474
num_examples: 5010
- name: test.sw
num_bytes: 871659
num_examples: 5010
- name: test.th
num_bytes: 2147023
num_examples: 5010
- name: test.tr
num_bytes: 934942
num_examples: 5010
- name: test.ur
num_bytes: 1416246
num_examples: 5010
- name: test.vi
num_bytes: 1190225
num_examples: 5010
- name: test.zh
num_bytes: 777937
num_examples: 5010
download_size: 875905871
dataset_size: 103503185
- config_name: paws-x
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: label
dtype:
class_label:
names:
'0': different
'1': same
splits:
- name: train
num_bytes: 12018349
num_examples: 49401
- name: validation.en
num_bytes: 484287
num_examples: 2000
- name: validation.de
num_bytes: 506009
num_examples: 2000
- name: validation.es
num_bytes: 505888
num_examples: 2000
- name: validation.fr
num_bytes: 525031
num_examples: 2000
- name: test.en
num_bytes: 486734
num_examples: 2000
- name: test.de
num_bytes: 516214
num_examples: 2000
- name: test.es
num_bytes: 511111
num_examples: 2000
- name: test.fr
num_bytes: 527101
num_examples: 2000
download_size: 875905871
dataset_size: 16080724
- config_name: qadsm
features:
- name: query
dtype: string
- name: ad_title
dtype: string
- name: ad_description
dtype: string
- name: relevance_label
dtype:
class_label:
names:
'0': Bad
'1': Good
splits:
- name: train
num_bytes: 12528141
num_examples: 100000
- name: validation.en
num_bytes: 1248839
num_examples: 10000
- name: validation.de
num_bytes: 1566011
num_examples: 10000
- name: validation.fr
num_bytes: 1651804
num_examples: 10000
- name: test.en
num_bytes: 1236997
num_examples: 10000
- name: test.de
num_bytes: 1563985
num_examples: 10000
- name: test.fr
num_bytes: 1594118
num_examples: 10000
download_size: 875905871
dataset_size: 21389895
- config_name: wpr
features:
- name: query
dtype: string
- name: web_page_title
dtype: string
- name: web_page_snippet
dtype: string
- name: relavance_label
dtype:
class_label:
names:
'0': Bad
'1': Fair
'2': Good
'3': Excellent
'4': Perfect
splits:
- name: train
num_bytes: 33885931
num_examples: 99997
- name: validation.en
num_bytes: 3417760
num_examples: 10008
- name: validation.de
num_bytes: 2929029
num_examples: 10004
- name: validation.es
num_bytes: 2451026
num_examples: 10004
- name: validation.fr
num_bytes: 3055899
num_examples: 10005
- name: validation.it
num_bytes: 2416388
num_examples: 10003
- name: validation.pt
num_bytes: 2449797
num_examples: 10001
- name: validation.zh
num_bytes: 3118577
num_examples: 10002
- name: test.en
num_bytes: 3402487
num_examples: 10004
- name: test.de
num_bytes: 2923577
num_examples: 9997
- name: test.es
num_bytes: 2422895
num_examples: 10006
- name: test.fr
num_bytes: 3059392
num_examples: 10020
- name: test.it
num_bytes: 2403736
num_examples: 10001
- name: test.pt
num_bytes: 2462350
num_examples: 10015
- name: test.zh
num_bytes: 3141598
num_examples: 9999
download_size: 875905871
dataset_size: 73540442
- config_name: qam
features:
- name: question
dtype: string
- name: answer
dtype: string
- name: label
dtype:
class_label:
names:
'0': 'False'
'1': 'True'
splits:
- name: train
num_bytes: 28357964
num_examples: 100000
- name: validation.en
num_bytes: 3085501
num_examples: 10000
- name: validation.de
num_bytes: 3304031
num_examples: 10000
- name: validation.fr
num_bytes: 3142833
num_examples: 10000
- name: test.en
num_bytes: 3082297
num_examples: 10000
- name: test.de
num_bytes: 3309496
num_examples: 10000
- name: test.fr
num_bytes: 3140213
num_examples: 10000
download_size: 875905871
dataset_size: 47422335
- config_name: qg
features:
- name: answer_passage
dtype: string
- name: question
dtype: string
splits:
- name: train
num_bytes: 27464034
num_examples: 100000
- name: validation.en
num_bytes: 3047040
num_examples: 10000
- name: validation.de
num_bytes: 3270877
num_examples: 10000
- name: validation.es
num_bytes: 3341775
num_examples: 10000
- name: validation.fr
num_bytes: 3175615
num_examples: 10000
- name: validation.it
num_bytes: 3191193
num_examples: 10000
- name: validation.pt
num_bytes: 3328434
num_examples: 10000
- name: test.en
num_bytes: 3043813
num_examples: 10000
- name: test.de
num_bytes: 3270190
num_examples: 10000
- name: test.es
num_bytes: 3353522
num_examples: 10000
- name: test.fr
num_bytes: 3178352
num_examples: 10000
- name: test.it
num_bytes: 3195684
num_examples: 10000
- name: test.pt
num_bytes: 3340296
num_examples: 10000
download_size: 875905871
dataset_size: 66200825
- config_name: ntg
features:
- name: news_body
dtype: string
- name: news_title
dtype: string
splits:
- name: train
num_bytes: 890709581
num_examples: 300000
- name: validation.en
num_bytes: 34317076
num_examples: 10000
- name: validation.de
num_bytes: 27404379
num_examples: 10000
- name: validation.es
num_bytes: 30896109
num_examples: 10000
- name: validation.fr
num_bytes: 27261523
num_examples: 10000
- name: validation.ru
num_bytes: 43247386
num_examples: 10000
- name: test.en
num_bytes: 33697284
num_examples: 10000
- name: test.de
num_bytes: 26738202
num_examples: 10000
- name: test.es
num_bytes: 31111489
num_examples: 10000
- name: test.fr
num_bytes: 26997447
num_examples: 10000
- name: test.ru
num_bytes: 44050350
num_examples: 10000
download_size: 875905871
dataset_size: 1216430826
config_names:
- mlqa
- nc
- ner
- ntg
- paws-x
- pos
- qadsm
- qam
- qg
- wpr
- xnli
---
# Dataset Card for XGLUE
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [XGLUE homepage](https://microsoft.github.io/XGLUE/)
- **Paper:** [XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation](https://arxiv.org/abs/2004.01401)
- **Point of Contact:** [[email protected]](mailto:[email protected]?subject=XGLUE Feedback)
### Dataset Summary
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to
cross-lingual natural language understanding and generation.
XGLUE is composed of 11 tasks spans 19 languages. For each task, the training data is only available in English.
This means that to succeed at XGLUE, a model must have a strong zero-shot cross-lingual transfer capability to learn
from the English data of a specific task and transfer what it learned to other languages. Comparing to its concurrent
work XTREME, XGLUE has two characteristics: First, it includes cross-lingual NLU and cross-lingual NLG tasks at the
same time; Second, besides including 5 existing cross-lingual tasks (i.e. NER, POS, MLQA, PAWS-X and XNLI), XGLUE
selects 6 new tasks from Bing scenarios as well, including News Classification (NC), Query-Ad Matching (QADSM),
Web Page Ranking (WPR), QA Matching (QAM), Question Generation (QG) and News Title Generation (NTG). Such diversities
of languages, tasks and task origin provide a comprehensive benchmark for quantifying the quality of a pre-trained
model on cross-lingual natural language understanding and generation.
The training data of each task is in English while the validation and test data is present in multiple different languages.
The following table shows which languages are present as validation and test data for each config.
![Available Languages for Test and Validation Data](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xglue_langs.png)
Therefore, for each config, a cross-lingual pre-trained model should be fine-tuned on the English training data, and evaluated on for all languages.
### Supported Tasks and Leaderboards
The XGLUE leaderboard can be found on the [homepage](https://microsoft.github.io/XGLUE/) and
consists of a XGLUE-Understanding Score (the average of the tasks `ner`, `pos`, `mlqa`, `nc`, `xnli`, `paws-x`, `qadsm`, `wpr`, `qam`) and a XGLUE-Generation Score (the average of the tasks `qg`, `ntg`).
### Languages
For all tasks (configurations), the "train" split is in English (`en`).
For each task, the "validation" and "test" splits are present in these languages:
- ner: `en`, `de`, `es`, `nl`
- pos: `en`, `de`, `es`, `nl`, `bg`, `el`, `fr`, `pl`, `tr`, `vi`, `zh`, `ur`, `hi`, `it`, `ar`, `ru`, `th`
- mlqa: `en`, `de`, `ar`, `es`, `hi`, `vi`, `zh`
- nc: `en`, `de`, `es`, `fr`, `ru`
- xnli: `en`, `ar`, `bg`, `de`, `el`, `es`, `fr`, `hi`, `ru`, `sw`, `th`, `tr`, `ur`, `vi`, `zh`
- paws-x: `en`, `de`, `es`, `fr`
- qadsm: `en`, `de`, `fr`
- wpr: `en`, `de`, `es`, `fr`, `it`, `pt`, `zh`
- qam: `en`, `de`, `fr`
- qg: `en`, `de`, `es`, `fr`, `it`, `pt`
- ntg: `en`, `de`, `es`, `fr`, `ru`
## Dataset Structure
### Data Instances
#### ner
An example of 'test.nl' looks as follows.
```json
{
"ner": [
"O",
"O",
"O",
"B-LOC",
"O",
"B-LOC",
"O",
"B-LOC",
"O",
"O",
"O",
"O",
"O",
"O",
"O",
"B-PER",
"I-PER",
"O",
"O",
"B-LOC",
"O",
"O"
],
"words": [
"Dat",
"is",
"in",
"Itali\u00eb",
",",
"Spanje",
"of",
"Engeland",
"misschien",
"geen",
"probleem",
",",
"maar",
"volgens",
"'",
"Der",
"Kaiser",
"'",
"in",
"Duitsland",
"wel",
"."
]
}
```
#### pos
An example of 'test.fr' looks as follows.
```json
{
"pos": [
"PRON",
"VERB",
"SCONJ",
"ADP",
"PRON",
"CCONJ",
"DET",
"NOUN",
"ADP",
"NOUN",
"CCONJ",
"NOUN",
"ADJ",
"PRON",
"PRON",
"AUX",
"ADV",
"VERB",
"PUNCT",
"PRON",
"VERB",
"VERB",
"DET",
"ADJ",
"NOUN",
"ADP",
"DET",
"NOUN",
"PUNCT"
],
"words": [
"Je",
"sens",
"qu'",
"entre",
"\u00e7a",
"et",
"les",
"films",
"de",
"m\u00e9decins",
"et",
"scientifiques",
"fous",
"que",
"nous",
"avons",
"d\u00e9j\u00e0",
"vus",
",",
"nous",
"pourrions",
"emprunter",
"un",
"autre",
"chemin",
"pour",
"l'",
"origine",
"."
]
}
```
#### mlqa
An example of 'test.hi' looks as follows.
```json
{
"answers": {
"answer_start": [
378
],
"text": [
"\u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935"
]
},
"context": "\u0909\u0938\u0940 \"\u090f\u0930\u093f\u092f\u093e XX \" \u0928\u093e\u092e\u0915\u0930\u0923 \u092a\u094d\u0930\u0923\u093e\u0932\u0940 \u0915\u093e \u092a\u094d\u0930\u092f\u094b\u0917 \u0928\u0947\u0935\u093e\u0926\u093e \u092a\u0930\u0940\u0915\u094d\u0937\u0923 \u0938\u094d\u0925\u0932 \u0915\u0947 \u0905\u0928\u094d\u092f \u092d\u093e\u0917\u094b\u0902 \u0915\u0947 \u0932\u093f\u090f \u0915\u093f\u092f\u093e \u0917\u092f\u093e \u0939\u0948\u0964\u092e\u0942\u0932 \u0930\u0942\u092a \u092e\u0947\u0902 6 \u092c\u091f\u0947 10 \u092e\u0940\u0932 \u0915\u093e \u092f\u0939 \u0906\u092f\u0924\u093e\u0915\u093e\u0930 \u0905\u0921\u094d\u0921\u093e \u0905\u092c \u0924\u0925\u093e\u0915\u0925\u093f\u0924 '\u0917\u094d\u0930\u0942\u092e \u092c\u0949\u0915\u094d\u0938 \" \u0915\u093e \u090f\u0915 \u092d\u093e\u0917 \u0939\u0948, \u091c\u094b \u0915\u093f 23 \u092c\u091f\u0947 25.3 \u092e\u0940\u0932 \u0915\u093e \u090f\u0915 \u092a\u094d\u0930\u0924\u093f\u092c\u0902\u0927\u093f\u0924 \u0939\u0935\u093e\u0908 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 \u0939\u0948\u0964 \u092f\u0939 \u0915\u094d\u0937\u0947\u0924\u094d\u0930 NTS \u0915\u0947 \u0906\u0902\u0924\u0930\u093f\u0915 \u0938\u0921\u093c\u0915 \u092a\u094d\u0930\u092c\u0902\u0927\u0928 \u0938\u0947 \u091c\u0941\u0921\u093c\u093e \u0939\u0948, \u091c\u093f\u0938\u0915\u0940 \u092a\u0915\u094d\u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u0926\u0915\u094d\u0937\u093f\u0923 \u092e\u0947\u0902 \u092e\u0930\u0915\u0930\u0940 \u0915\u0940 \u0913\u0930 \u0914\u0930 \u092a\u0936\u094d\u091a\u093f\u092e \u092e\u0947\u0902 \u092f\u0941\u0915\u094d\u0915\u093e \u092b\u094d\u0932\u0948\u091f \u0915\u0940 \u0913\u0930 \u091c\u093e\u0924\u0940 \u0939\u0948\u0902\u0964 \u091d\u0940\u0932 \u0938\u0947 \u0909\u0924\u094d\u0924\u0930 \u092a\u0942\u0930\u094d\u0935 \u0915\u0940 \u0913\u0930 \u092c\u0922\u093c\u0924\u0947 \u0939\u0941\u090f \u0935\u094d\u092f\u093e\u092a\u0915 \u0914\u0930 \u0914\u0930 \u0938\u0941\u0935\u094d\u092f\u0935\u0938\u094d\u0925\u093f\u0924 \u0917\u094d\u0930\u0942\u092e \u091d\u0940\u0932 \u0915\u0940 \u0938\u0921\u093c\u0915\u0947\u0902 \u090f\u0915 \u0926\u0930\u094d\u0930\u0947 \u0915\u0947 \u091c\u0930\u093f\u092f\u0947 \u092a\u0947\u091a\u0940\u0926\u093e \u092a\u0939\u093e\u0921\u093c\u093f\u092f\u094b\u0902 \u0938\u0947 \u0939\u094b\u0915\u0930 \u0917\u0941\u091c\u0930\u0924\u0940 \u0939\u0948\u0902\u0964 \u092a\u0939\u0932\u0947 \u0938\u0921\u093c\u0915\u0947\u0902 \u0917\u094d\u0930\u0942\u092e \u0918\u093e\u091f\u0940",
"question": "\u091d\u0940\u0932 \u0915\u0947 \u0938\u093e\u092a\u0947\u0915\u094d\u0937 \u0917\u094d\u0930\u0942\u092e \u0932\u0947\u0915 \u0930\u094b\u0921 \u0915\u0939\u093e\u0901 \u091c\u093e\u0924\u0940 \u0925\u0940?"
}
```
#### nc
An example of 'test.es' looks as follows.
```json
{
"news_body": "El bizcocho es seguramente el producto m\u00e1s b\u00e1sico y sencillo de toda la reposter\u00eda : consiste en poco m\u00e1s que mezclar unos cuantos ingredientes, meterlos al horno y esperar a que se hagan. Por obra y gracia del impulsor qu\u00edmico, tambi\u00e9n conocido como \"levadura de tipo Royal\", despu\u00e9s de un rato de calorcito esta combinaci\u00f3n de harina, az\u00facar, huevo, grasa -aceite o mantequilla- y l\u00e1cteo se transforma en uno de los productos m\u00e1s deliciosos que existen para desayunar o merendar . Por muy manazas que seas, es m\u00e1s que probable que tu bizcocho casero supere en calidad a cualquier infamia industrial envasada. Para lograr un bizcocho digno de admiraci\u00f3n s\u00f3lo tienes que respetar unas pocas normas que afectan a los ingredientes, proporciones, mezclado, horneado y desmoldado. Todas las tienes resumidas en unos dos minutos el v\u00eddeo de arriba, en el que adem \u00e1s aprender\u00e1s alg\u00fan truquillo para que tu bizcochaco quede m\u00e1s fino, jugoso, esponjoso y amoroso. M\u00e1s en MSN:",
"news_category": "foodanddrink",
"news_title": "Cocina para lerdos: las leyes del bizcocho"
}
```
#### xnli
An example of 'validation.th' looks as follows.
```json
{
"hypothesis": "\u0e40\u0e02\u0e32\u0e42\u0e17\u0e23\u0e2b\u0e32\u0e40\u0e40\u0e21\u0e48\u0e02\u0e2d\u0e07\u0e40\u0e02\u0e32\u0e2d\u0e22\u0e48\u0e32\u0e07\u0e23\u0e27\u0e14\u0e40\u0e23\u0e47\u0e27\u0e2b\u0e25\u0e31\u0e07\u0e08\u0e32\u0e01\u0e17\u0e35\u0e48\u0e23\u0e16\u0e42\u0e23\u0e07\u0e40\u0e23\u0e35\u0e22\u0e19\u0e2a\u0e48\u0e07\u0e40\u0e02\u0e32\u0e40\u0e40\u0e25\u0e49\u0e27",
"label": 1,
"premise": "\u0e41\u0e25\u0e30\u0e40\u0e02\u0e32\u0e1e\u0e39\u0e14\u0e27\u0e48\u0e32, \u0e21\u0e48\u0e32\u0e21\u0e4a\u0e32 \u0e1c\u0e21\u0e2d\u0e22\u0e39\u0e48\u0e1a\u0e49\u0e32\u0e19"
}
```
#### paws-x
An example of 'test.es' looks as follows.
```json
{
"label": 1,
"sentence1": "La excepci\u00f3n fue entre fines de 2005 y 2009 cuando jug\u00f3 en Suecia con Carlstad United BK, Serbia con FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia.",
"sentence2": "La excepci\u00f3n se dio entre fines del 2005 y 2009, cuando jug\u00f3 con Suecia en el Carlstad United BK, Serbia con el FK Borac \u010ca\u010dak y el FC Terek Grozny de Rusia."
}
```
#### qadsm
An example of 'train' looks as follows.
```json
{
"ad_description": "Your New England Cruise Awaits! Holland America Line Official Site.",
"ad_title": "New England Cruises",
"query": "cruise portland maine",
"relevance_label": 1
}
```
#### wpr
An example of 'test.zh' looks as follows.
```json
{
"query": "maxpro\u5b98\u7f51",
"relavance_label": 0,
"web_page_snippet": "\u5728\u7ebf\u8d2d\u4e70\uff0c\u552e\u540e\u670d\u52a1\u3002vivo\u667a\u80fd\u624b\u673a\u5f53\u5b63\u660e\u661f\u673a\u578b\u6709NEX\uff0cvivo X21\uff0cvivo X20\uff0c\uff0cvivo X23\u7b49\uff0c\u5728vivo\u5b98\u7f51\u8d2d\u4e70\u624b\u673a\u53ef\u4ee5\u4eab\u53d712 \u671f\u514d\u606f\u4ed8\u6b3e\u3002 \u54c1\u724c Funtouch OS \u4f53\u9a8c\u5e97 | ...",
"wed_page_title": "vivo\u667a\u80fd\u624b\u673a\u5b98\u65b9\u7f51\u7ad9-AI\u975e\u51e1\u6444\u5f71X23"
}
```
#### qam
An example of 'validation.en' looks as follows.
```json
{
"annswer": "Erikson has stated that after the last novel of the Malazan Book of the Fallen was finished, he and Esslemont would write a comprehensive guide tentatively named The Encyclopaedia Malazica.",
"label": 0,
"question": "main character of malazan book of the fallen"
}
```
#### qg
An example of 'test.de' looks as follows.
```json
{
"answer_passage": "Medien bei WhatsApp automatisch speichern. Tippen Sie oben rechts unter WhatsApp auf die drei Punkte oder auf die Men\u00fc-Taste Ihres Smartphones. Dort wechseln Sie in die \"Einstellungen\" und von hier aus weiter zu den \"Chat-Einstellungen\". Unter dem Punkt \"Medien Auto-Download\" k\u00f6nnen Sie festlegen, wann die WhatsApp-Bilder heruntergeladen werden sollen.",
"question": "speichenn von whats app bilder unterbinden"
}
```
#### ntg
An example of 'test.en' looks as follows.
```json
{
"news_body": "Check out this vintage Willys Pickup! As they say, the devil is in the details, and it's not every day you see such attention paid to every last area of a restoration like with this 1961 Willys Pickup . Already the Pickup has a unique look that shares some styling with the Jeep, plus some original touches you don't get anywhere else. It's a classy way to show up to any event, all thanks to Hollywood Motors . A burgundy paint job contrasts with white lower panels and the roof. Plenty of tasteful chrome details grace the exterior, including the bumpers, headlight bezels, crossmembers on the grille, hood latches, taillight bezels, exhaust finisher, tailgate hinges, etc. Steel wheels painted white and chrome hubs are a tasteful addition. Beautiful oak side steps and bed strips add a touch of craftsmanship to this ride. This truck is of real showroom quality, thanks to the astoundingly detailed restoration work performed on it, making this Willys Pickup a fierce contender for best of show. Under that beautiful hood is a 225 Buick V6 engine mated to a three-speed manual transmission, so you enjoy an ideal level of control. Four wheel drive is functional, making it that much more utilitarian and downright cool. The tires are new, so you can enjoy a lot of life out of them, while the wheels and hubs are in great condition. Just in case, a fifth wheel with a tire and a side mount are included. Just as important, this Pickup runs smoothly, so you can go cruising or even hit the open road if you're interested in participating in some classic rallies. You might associate Willys with the famous Jeep CJ, but the automaker did produce a fair amount of trucks. The Pickup is quite the unique example, thanks to distinct styling that really turns heads, making it a favorite at quite a few shows. Source: Hollywood Motors Check These Rides Out Too: Fear No Trails With These Off-Roaders 1965 Pontiac GTO: American Icon For Sale In Canada Low-Mileage 1955 Chevy 3100 Represents Turn In Pickup Market",
"news_title": "This 1961 Willys Pickup Will Let You Cruise In Style"
}
```
### Data Fields
#### ner
In the following each data field in ner is explained. The data fields are the same among all splits.
- `words`: a list of words composing the sentence.
- `ner`: a list of entitity classes corresponding to each word respectively.
#### pos
In the following each data field in pos is explained. The data fields are the same among all splits.
- `words`: a list of words composing the sentence.
- `pos`: a list of "part-of-speech" classes corresponding to each word respectively.
#### mlqa
In the following each data field in mlqa is explained. The data fields are the same among all splits.
- `context`: a string, the context containing the answer.
- `question`: a string, the question to be answered.
- `answers`: a string, the answer to `question`.
#### nc
In the following each data field in nc is explained. The data fields are the same among all splits.
- `news_title`: a string, to the title of the news report.
- `news_body`: a string, to the actual news report.
- `news_category`: a string, the category of the news report, *e.g.* `foodanddrink`
#### xnli
In the following each data field in xnli is explained. The data fields are the same among all splits.
- `premise`: a string, the context/premise, *i.e.* the first sentence for natural language inference.
- `hypothesis`: a string, a sentence whereas its relation to `premise` is to be classified, *i.e.* the second sentence for natural language inference.
- `label`: a class catory (int), natural language inference relation class between `hypothesis` and `premise`. One of 0: entailment, 1: contradiction, 2: neutral.
#### paws-x
In the following each data field in paws-x is explained. The data fields are the same among all splits.
- `sentence1`: a string, a sentence.
- `sentence2`: a string, a sentence whereas the sentence is either a paraphrase of `sentence1` or not.
- `label`: a class label (int), whether `sentence2` is a paraphrase of `sentence1` One of 0: different, 1: same.
#### qadsm
In the following each data field in qadsm is explained. The data fields are the same among all splits.
- `query`: a string, the search query one would insert into a search engine.
- `ad_title`: a string, the title of the advertisement.
- `ad_description`: a string, the content of the advertisement, *i.e.* the main body.
- `relevance_label`: a class label (int), how relevant the advertisement `ad_title` + `ad_description` is to the search query `query`. One of 0: Bad, 1: Good.
#### wpr
In the following each data field in wpr is explained. The data fields are the same among all splits.
- `query`: a string, the search query one would insert into a search engine.
- `web_page_title`: a string, the title of a web page.
- `web_page_snippet`: a string, the content of a web page, *i.e.* the main body.
- `relavance_label`: a class label (int), how relevant the web page `web_page_snippet` + `web_page_snippet` is to the search query `query`. One of 0: Bad, 1: Fair, 2: Good, 3: Excellent, 4: Perfect.
#### qam
In the following each data field in qam is explained. The data fields are the same among all splits.
- `question`: a string, a question.
- `answer`: a string, a possible answer to `question`.
- `label`: a class label (int), whether the `answer` is relevant to the `question`. One of 0: False, 1: True.
#### qg
In the following each data field in qg is explained. The data fields are the same among all splits.
- `answer_passage`: a string, a detailed answer to the `question`.
- `question`: a string, a question.
#### ntg
In the following each data field in ntg is explained. The data fields are the same among all splits.
- `news_body`: a string, the content of a news article.
- `news_title`: a string, the title corresponding to the news article `news_body`.
### Data Splits
#### ner
The following table shows the number of data samples/number of rows for each split in ner.
| |train|validation.en|validation.de|validation.es|validation.nl|test.en|test.de|test.es|test.nl|
|---|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|ner|14042| 3252| 2874| 1923| 2895| 3454| 3007| 1523| 5202|
#### pos
The following table shows the number of data samples/number of rows for each split in pos.
| |train|validation.en|validation.de|validation.es|validation.nl|validation.bg|validation.el|validation.fr|validation.pl|validation.tr|validation.vi|validation.zh|validation.ur|validation.hi|validation.it|validation.ar|validation.ru|validation.th|test.en|test.de|test.es|test.nl|test.bg|test.el|test.fr|test.pl|test.tr|test.vi|test.zh|test.ur|test.hi|test.it|test.ar|test.ru|test.th|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|pos|25376| 2001| 798| 1399| 717| 1114| 402| 1475| 2214| 987| 799| 499| 551| 1658| 563| 908| 578| 497| 2076| 976| 425| 595| 1115| 455| 415| 2214| 982| 799| 499| 534| 1683| 481| 679| 600| 497|
#### mlqa
The following table shows the number of data samples/number of rows for each split in mlqa.
| |train|validation.en|validation.de|validation.ar|validation.es|validation.hi|validation.vi|validation.zh|test.en|test.de|test.ar|test.es|test.hi|test.vi|test.zh|
|----|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|mlqa|87599| 1148| 512| 517| 500| 507| 511| 504| 11590| 4517| 5335| 5253| 4918| 5495| 5137|
#### nc
The following table shows the number of data samples/number of rows for each split in nc.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### xnli
The following table shows the number of data samples/number of rows for each split in xnli.
| |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010|
#### nc
The following table shows the number of data samples/number of rows for each split in nc.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|nc |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### xnli
The following table shows the number of data samples/number of rows for each split in xnli.
| |train |validation.en|validation.ar|validation.bg|validation.de|validation.el|validation.es|validation.fr|validation.hi|validation.ru|validation.sw|validation.th|validation.tr|validation.ur|validation.vi|validation.zh|test.en|test.ar|test.bg|test.de|test.el|test.es|test.fr|test.hi|test.ru|test.sw|test.th|test.tr|test.ur|test.vi|test.zh|
|----|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|------:|
|xnli|392702| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 2490| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010| 5010|
#### paws-x
The following table shows the number of data samples/number of rows for each split in paws-x.
| |train|validation.en|validation.de|validation.es|validation.fr|test.en|test.de|test.es|test.fr|
|------|----:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|
|paws-x|49401| 2000| 2000| 2000| 2000| 2000| 2000| 2000| 2000|
#### qadsm
The following table shows the number of data samples/number of rows for each split in qadsm.
| |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|-----|-----:|------------:|------------:|------------:|------:|------:|------:|
|qadsm|100000| 10000| 10000| 10000| 10000| 10000| 10000|
#### wpr
The following table shows the number of data samples/number of rows for each split in wpr.
| |train|validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|validation.zh|test.en|test.de|test.es|test.fr|test.it|test.pt|test.zh|
|---|----:|------------:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|------:|
|wpr|99997| 10008| 10004| 10004| 10005| 10003| 10001| 10002| 10004| 9997| 10006| 10020| 10001| 10015| 9999|
#### qam
The following table shows the number of data samples/number of rows for each split in qam.
| |train |validation.en|validation.de|validation.fr|test.en|test.de|test.fr|
|---|-----:|------------:|------------:|------------:|------:|------:|------:|
|qam|100000| 10000| 10000| 10000| 10000| 10000| 10000|
#### qg
The following table shows the number of data samples/number of rows for each split in qg.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.it|validation.pt|test.en|test.de|test.es|test.fr|test.it|test.pt|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|------:|
|qg |100000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
#### ntg
The following table shows the number of data samples/number of rows for each split in ntg.
| |train |validation.en|validation.de|validation.es|validation.fr|validation.ru|test.en|test.de|test.es|test.fr|test.ru|
|---|-----:|------------:|------------:|------------:|------------:|------------:|------:|------:|------:|------:|------:|
|ntg|300000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000| 10000|
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
[More Information Needed]
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset is maintained mainly by Yaobo Liang, Yeyun Gong, Nan Duan, Ming Gong, Linjun Shou, and Daniel Campos from Microsoft Research.
### Licensing Information
The XGLUE datasets are intended for non-commercial research purposes only to promote advancement in the field of
artificial intelligence and related areas, and is made available free of charge without extending any license or other
intellectual property rights. The dataset is provided “as is” without warranty and usage of the data has risks since we
may not own the underlying rights in the documents. We are not be liable for any damages related to use of the dataset.
Feedback is voluntarily given and can be used as we see fit. Upon violation of any of these terms, your rights to use
the dataset will end automatically.
If you have questions about use of the dataset or any research outputs in your products or services, we encourage you
to undertake your own independent legal review. For other questions, please feel free to contact us.
### Citation Information
If you use this dataset, please cite it. Additionally, since XGLUE is also built out of exiting 5 datasets, please
ensure you cite all of them.
An example:
```
We evaluate our model using the XGLUE benchmark \cite{Liang2020XGLUEAN}, a cross-lingual evaluation benchmark
consiting of Named Entity Resolution (NER) \cite{Sang2002IntroductionTT} \cite{Sang2003IntroductionTT},
Part of Speech Tagging (POS) \cite{11234/1-3105}, News Classification (NC), MLQA \cite{Lewis2019MLQAEC},
XNLI \cite{Conneau2018XNLIEC}, PAWS-X \cite{Yang2019PAWSXAC}, Query-Ad Matching (QADSM), Web Page Ranking (WPR),
QA Matching (QAM), Question Generation (QG) and News Title Generation (NTG).
```
```
@article{Liang2020XGLUEAN,
title={XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation},
author={Yaobo Liang and Nan Duan and Yeyun Gong and Ning Wu and Fenfei Guo and Weizhen Qi and Ming Gong and Linjun Shou and Daxin Jiang and Guihong Cao and Xiaodong Fan and Ruofei Zhang and Rahul Agrawal and Edward Cui and Sining Wei and Taroon Bharti and Ying Qiao and Jiun-Hung Chen and Winnie Wu and Shuguang Liu and Fan Yang and Daniel Campos and Rangan Majumder and Ming Zhou},
journal={arXiv},
year={2020},
volume={abs/2004.01401}
}
@misc{11234/1-3105,
title={Universal Dependencies 2.5},
author={Zeman, Daniel and Nivre, Joakim and Abrams, Mitchell and Aepli, No{\"e}mi and Agi{\'c}, {\v Z}eljko and Ahrenberg, Lars and Aleksandravi{\v c}i{\=u}t{\.e}, Gabriel{\.e} and Antonsen, Lene and Aplonova, Katya and Aranzabe, Maria Jesus and Arutie, Gashaw and Asahara, Masayuki and Ateyah, Luma and Attia, Mohammed and Atutxa, Aitziber and Augustinus, Liesbeth and Badmaeva, Elena and Ballesteros, Miguel and Banerjee, Esha and Bank, Sebastian and Barbu Mititelu, Verginica and Basmov, Victoria and Batchelor, Colin and Bauer, John and Bellato, Sandra and Bengoetxea, Kepa and Berzak, Yevgeni and Bhat, Irshad Ahmad and Bhat, Riyaz Ahmad and Biagetti, Erica and Bick, Eckhard and Bielinskien{\.e}, Agn{\.e} and Blokland, Rogier and Bobicev, Victoria and Boizou, Lo{\"{\i}}c and Borges V{\"o}lker, Emanuel and B{\"o}rstell, Carl and Bosco, Cristina and Bouma, Gosse and Bowman, Sam and Boyd, Adriane and Brokait{\.e}, Kristina and Burchardt, Aljoscha and Candito, Marie and Caron, Bernard and Caron, Gauthier and Cavalcanti, Tatiana and Cebiro{\u g}lu Eryi{\u g}it, G{\"u}l{\c s}en and Cecchini, Flavio Massimiliano and Celano, Giuseppe G. A. and {\v C}{\'e}pl{\"o}, Slavom{\'{\i}}r and Cetin, Savas and Chalub, Fabricio and Choi, Jinho and Cho, Yongseok and Chun, Jayeol and Cignarella, Alessandra T. and Cinkov{\'a}, Silvie and Collomb, Aur{\'e}lie and {\c C}{\"o}ltekin, {\c C}a{\u g}r{\i} and Connor, Miriam and Courtin, Marine and Davidson, Elizabeth and de Marneffe, Marie-Catherine and de Paiva, Valeria and de Souza, Elvis and Diaz de Ilarraza, Arantza and Dickerson, Carly and Dione, Bamba and Dirix, Peter and Dobrovoljc, Kaja and Dozat, Timothy and Droganova, Kira and Dwivedi, Puneet and Eckhoff, Hanne and Eli, Marhaba and Elkahky, Ali and Ephrem, Binyam and Erina, Olga and Erjavec, Toma{\v z} and Etienne, Aline and Evelyn, Wograine and Farkas, Rich{\'a}rd and Fernandez Alcalde, Hector and Foster, Jennifer and Freitas, Cl{\'a}udia and Fujita, Kazunori and Gajdo{\v s}ov{\'a}, Katar{\'{\i}}na and Galbraith, Daniel and Garcia, Marcos and G{\"a}rdenfors, Moa and Garza, Sebastian and Gerdes, Kim and Ginter, Filip and Goenaga, Iakes and Gojenola, Koldo and G{\"o}k{\i}rmak, Memduh and Goldberg, Yoav and G{\'o}mez Guinovart, Xavier and Gonz{\'a}lez Saavedra, Berta and Grici{\=u}t{\.e}, Bernadeta and Grioni, Matias and Gr{\=u}z{\={\i}}tis, Normunds and Guillaume, Bruno and Guillot-Barbance, C{\'e}line and Habash, Nizar and Haji{\v c}, Jan and Haji{\v c} jr., Jan and H{\"a}m{\"a}l{\"a}inen, Mika and H{\`a} M{\~y}, Linh and Han, Na-Rae and Harris, Kim and Haug, Dag and Heinecke, Johannes and Hennig, Felix and Hladk{\'a}, Barbora and Hlav{\'a}{\v c}ov{\'a}, Jaroslava and Hociung, Florinel and Hohle, Petter and Hwang, Jena and Ikeda, Takumi and Ion, Radu and Irimia, Elena and Ishola, {\d O}l{\'a}j{\'{\i}}d{\'e} and Jel{\'{\i}}nek, Tom{\'a}{\v s} and Johannsen, Anders and J{\o}rgensen, Fredrik and Juutinen, Markus and Ka{\c s}{\i}kara, H{\"u}ner and Kaasen, Andre and Kabaeva, Nadezhda and Kahane, Sylvain and Kanayama, Hiroshi and Kanerva, Jenna and Katz, Boris and Kayadelen, Tolga and Kenney, Jessica and Kettnerov{\'a}, V{\'a}clava and Kirchner, Jesse and Klementieva, Elena and K{\"o}hn, Arne and Kopacewicz, Kamil and Kotsyba, Natalia and Kovalevskait{\.e}, Jolanta and Krek, Simon and Kwak, Sookyoung and Laippala, Veronika and Lambertino, Lorenzo and Lam, Lucia and Lando, Tatiana and Larasati, Septina Dian and Lavrentiev, Alexei and Lee, John and L{\^e} H{\`{\^o}}ng, Phương and Lenci, Alessandro and Lertpradit, Saran and Leung, Herman and Li, Cheuk Ying and Li, Josie and Li, Keying and Lim, {KyungTae} and Liovina, Maria and Li, Yuan and Ljube{\v s}i{\'c}, Nikola and Loginova, Olga and Lyashevskaya, Olga and Lynn, Teresa and Macketanz, Vivien and Makazhanov, Aibek and Mandl, Michael and Manning, Christopher and Manurung, Ruli and M{\u a}r{\u a}nduc, C{\u a}t{\u a}lina and Mare{\v c}ek, David and Marheinecke, Katrin and Mart{\'{\i}}nez Alonso, H{\'e}ctor and Martins, Andr{\'e} and Ma{\v s}ek, Jan and Matsumoto, Yuji and {McDonald}, Ryan and {McGuinness}, Sarah and Mendon{\c c}a, Gustavo and Miekka, Niko and Misirpashayeva, Margarita and Missil{\"a}, Anna and Mititelu, C{\u a}t{\u a}lin and Mitrofan, Maria and Miyao, Yusuke and Montemagni, Simonetta and More, Amir and Moreno Romero, Laura and Mori, Keiko Sophie and Morioka, Tomohiko and Mori, Shinsuke and Moro, Shigeki and Mortensen, Bjartur and Moskalevskyi, Bohdan and Muischnek, Kadri and Munro, Robert and Murawaki, Yugo and M{\"u}{\"u}risep, Kaili and Nainwani, Pinkey and Navarro Hor{\~n}iacek, Juan Ignacio and Nedoluzhko, Anna and Ne{\v s}pore-B{\=e}rzkalne, Gunta and Nguy{\~{\^e}}n Th{\d i}, Lương and Nguy{\~{\^e}}n Th{\d i} Minh, Huy{\`{\^e}}n and Nikaido, Yoshihiro and Nikolaev, Vitaly and Nitisaroj, Rattima and Nurmi, Hanna and Ojala, Stina and Ojha, Atul Kr. and Ol{\'u}{\`o}kun, Ad{\'e}day{\d o}̀ and Omura, Mai and Osenova, Petya and {\"O}stling, Robert and {\O}vrelid, Lilja and Partanen, Niko and Pascual, Elena and Passarotti, Marco and Patejuk, Agnieszka and Paulino-Passos, Guilherme and Peljak-{\L}api{\'n}ska, Angelika and Peng, Siyao and Perez, Cenel-Augusto and Perrier, Guy and Petrova, Daria and Petrov, Slav and Phelan, Jason and Piitulainen, Jussi and Pirinen, Tommi A and Pitler, Emily and Plank, Barbara and Poibeau, Thierry and Ponomareva, Larisa and Popel, Martin and Pretkalni{\c n}a, Lauma and Pr{\'e}vost, Sophie and Prokopidis, Prokopis and Przepi{\'o}rkowski, Adam and Puolakainen, Tiina and Pyysalo, Sampo and Qi, Peng and R{\"a}{\"a}bis, Andriela and Rademaker, Alexandre and Ramasamy, Loganathan and Rama, Taraka and Ramisch, Carlos and Ravishankar, Vinit and Real, Livy and Reddy, Siva and Rehm, Georg and Riabov, Ivan and Rie{\ss}ler, Michael and Rimkut{\.e}, Erika and Rinaldi, Larissa and Rituma, Laura and Rocha, Luisa and Romanenko, Mykhailo and Rosa, Rudolf and Rovati, Davide and Roșca, Valentin and Rudina, Olga and Rueter, Jack and Sadde, Shoval and Sagot, Beno{\^{\i}}t and Saleh, Shadi and Salomoni, Alessio and Samard{\v z}i{\'c}, Tanja and Samson, Stephanie and Sanguinetti, Manuela and S{\"a}rg, Dage and Saul{\={\i}}te, Baiba and Sawanakunanon, Yanin and Schneider, Nathan and Schuster, Sebastian and Seddah, Djam{\'e} and Seeker, Wolfgang and Seraji, Mojgan and Shen, Mo and Shimada, Atsuko and Shirasu, Hiroyuki and Shohibussirri, Muh and Sichinava, Dmitry and Silveira, Aline and Silveira, Natalia and Simi, Maria and Simionescu, Radu and Simk{\'o}, Katalin and {\v S}imkov{\'a}, M{\'a}ria and Simov, Kiril and Smith, Aaron and Soares-Bastos, Isabela and Spadine, Carolyn and Stella, Antonio and Straka, Milan and Strnadov{\'a}, Jana and Suhr, Alane and Sulubacak, Umut and Suzuki, Shingo and Sz{\'a}nt{\'o}, Zsolt and Taji, Dima and Takahashi, Yuta and Tamburini, Fabio and Tanaka, Takaaki and Tellier, Isabelle and Thomas, Guillaume and Torga, Liisi and Trosterud, Trond and Trukhina, Anna and Tsarfaty, Reut and Tyers, Francis and Uematsu, Sumire and Ure{\v s}ov{\'a}, Zde{\v n}ka and Uria, Larraitz and Uszkoreit, Hans and Utka, Andrius and Vajjala, Sowmya and van Niekerk, Daniel and van Noord, Gertjan and Varga, Viktor and Villemonte de la Clergerie, Eric and Vincze, Veronika and Wallin, Lars and Walsh, Abigail and Wang, Jing Xian and Washington, Jonathan North and Wendt, Maximilan and Williams, Seyi and Wir{\'e}n, Mats and Wittern, Christian and Woldemariam, Tsegay and Wong, Tak-sum and Wr{\'o}blewska, Alina and Yako, Mary and Yamazaki, Naoki and Yan, Chunxiao and Yasuoka, Koichi and Yavrumyan, Marat M. and Yu, Zhuoran and {\v Z}abokrtsk{\'y}, Zden{\v e}k and Zeldes, Amir and Zhang, Manying and Zhu, Hanzhi},
url={http://hdl.handle.net/11234/1-3105},
note={{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University},
copyright={Licence Universal Dependencies v2.5},
year={2019}
}
@article{Sang2003IntroductionTT,
title={Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition},
author={Erik F. Tjong Kim Sang and Fien De Meulder},
journal={ArXiv},
year={2003},
volume={cs.CL/0306050}
}
@article{Sang2002IntroductionTT,
title={Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition},
author={Erik F. Tjong Kim Sang},
journal={ArXiv},
year={2002},
volume={cs.CL/0209010}
}
@inproceedings{Conneau2018XNLIEC,
title={XNLI: Evaluating Cross-lingual Sentence Representations},
author={Alexis Conneau and Guillaume Lample and Ruty Rinott and Adina Williams and Samuel R. Bowman and Holger Schwenk and Veselin Stoyanov},
booktitle={EMNLP},
year={2018}
}
@article{Lewis2019MLQAEC,
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
author={Patrick Lewis and Barlas Oguz and Ruty Rinott and Sebastian Riedel and Holger Schwenk},
journal={ArXiv},
year={2019},
volume={abs/1910.07475}
}
@article{Yang2019PAWSXAC,
title={PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification},
author={Yinfei Yang and Yuan Zhang and Chris Tar and Jason Baldridge},
journal={ArXiv},
year={2019},
volume={abs/1908.11828}
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |