zihanliu commited on
Commit
22ece8b
1 Parent(s): 91d97d5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -64,10 +64,10 @@ configs:
64
  ---
65
 
66
  ## ChatRAG Bench
67
- ChatRAG Bench is a benchmark for evaluating a model's conversational QA capability over documents or retrieved context. ChatRAG Bench are built on and derived from 10 existing datasets: Doc2Dial, QuAC, QReCC, TopioCQA, INSCIT, CoQA, HybriDialogue, DoQA, SQA, ConvFinQA. ChatRAG Bench covers a wide range of documents and question types, which require models to generate responses from long context, comprehend and reason over tables, conduct arithmetic calculations, and indicate when questions cannot be found within the context. The details of this benchmark are described in [here](https://arxiv.org/pdf/2401.10225v3). **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
68
 
69
  ## Other Resources
70
- [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225v3)
71
 
72
  ## Benchmark Results
73
 
 
64
  ---
65
 
66
  ## ChatRAG Bench
67
+ ChatRAG Bench is a benchmark for evaluating a model's conversational QA capability over documents or retrieved context. ChatRAG Bench are built on and derived from 10 existing datasets: Doc2Dial, QuAC, QReCC, TopioCQA, INSCIT, CoQA, HybriDialogue, DoQA, SQA, ConvFinQA. ChatRAG Bench covers a wide range of documents and question types, which require models to generate responses from long context, comprehend and reason over tables, conduct arithmetic calculations, and indicate when questions cannot be found within the context. The details of this benchmark are described in [here](https://arxiv.org/pdf/2401.10225). **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
68
 
69
  ## Other Resources
70
+ [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/pdf/2401.10225)
71
 
72
  ## Benchmark Results
73