File size: 1,604 Bytes
9e7b14c b49c37b 7f433eb b49c37b 7f433eb b49c37b 9e7b14c b49c37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
annotations_creators:
- unknown
language_creators:
- unknown
language:
- en
license:
- mit
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- unknown
task_categories:
- deduplication
task_ids:
- deduplication
- natural-language-inference
- semantic-similarity-scoring
- text-scoring
pretty_name: CORE Deduplication of Scholarly Documents
---
# Dataset Card for CORE Deduplication
## Dataset Description
- **Homepage:** [https://core.ac.uk/about/research-outputs](https://core.ac.uk/about/research-outputs)
- **Repository:** [https://core.ac.uk/datasets/core_2020-05-10_deduplication.zip](https://core.ac.uk/datasets/core_2020-05-10_deduplication.zip)
- **Paper:** [Deduplication of Scholarly Documents using Locality Sensitive Hashing and Word Embeddings](http://oro.open.ac.uk/id/eprint/70519)
- **Point of Contact:** [CORE Team](https://core.ac.uk/about#contact)
- **Size of downloaded dataset files:** 204 MB
### Dataset Summary
CORE 2020 Deduplication dataset (https://core.ac.uk/documentation/dataset) contains 100K scholarly documents labeled as duplicates/non-duplicates.
### Languages
The dataset language is English (BCP-47 `en`)
### Citation Information
```
@inproceedings{dedup2020,
title={Deduplication of Scholarly Documents using Locality Sensitive Hashing and Word Embeddings},
author={Gyawali, Bikash and Anastasiou, Lucas and Knoth, Petr},
booktitle = {Proceedings of 12th Language Resources and Evaluation Conference},
month = may,
year = 2020,
publisher = {France European Language Resources Association},
pages = {894-903}
}
```
|