|
|
|
|
|
""" Work in progress |
|
Plan: |
|
Read in fullword.json for list of words and token |
|
Read in pre-calculated "proper" embedding for each token from safetensor file |
|
Generate a tensor array of distance for each token, to every other token/embedding |
|
Save it out |
|
""" |
|
|
|
|
|
import sys |
|
import json |
|
import torch |
|
from safetensors import safe_open |
|
|
|
embed_file="embeddings.safetensors" |
|
|
|
device=torch.device("cuda") |
|
|
|
print("read in words from json now",file=sys.stderr) |
|
with open("fullword.json","r") as f: |
|
tokendict = json.load(f) |
|
wordlist = list(tokendict.keys()) |
|
|
|
print("read in embeddings now",file=sys.stderr) |
|
|
|
model = safe_open(embed_file,framework="pt",device="cuda") |
|
embs=model.get_tensor("embeddings") |
|
embs.to(device) |
|
print("Shape of loaded embeds =",embs.shape) |
|
|
|
|
|
distances = torch.cdist(embs, embs, p=2) |
|
print("distances shape is",distances.shape) |
|
|
|
|
|
|
|
def find_closest(targetword): |
|
try: |
|
targetindex=wordlist.index(targetword) |
|
except ValueError: |
|
print(targetword,"not found") |
|
return |
|
|
|
|
|
targetdistances=distances[targetindex] |
|
|
|
smallest_distances, smallest_indices = torch.topk(targetdistances, 10, largest=False) |
|
|
|
smallest_distances=smallest_distances.tolist() |
|
smallest_indices=smallest_indices.tolist() |
|
for d,i in zip(smallest_distances,smallest_indices): |
|
print(wordlist[i],"(",d,")") |
|
|
|
|
|
|
|
|
|
print("Input a word now:") |
|
for line in sys.stdin: |
|
input_text = line.rstrip() |
|
find_closest(input_text) |
|
|