Upload 2 files
Browse files- calculate-distances.py +6 -4
- calculate-distancesXL.py +102 -0
calculate-distances.py
CHANGED
@@ -21,6 +21,12 @@ clipsrc="openai/clip-vit-large-patch14"
|
|
21 |
processor=None
|
22 |
model=None
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
device=torch.device("cuda")
|
25 |
|
26 |
|
@@ -39,10 +45,6 @@ def init():
|
|
39 |
|
40 |
|
41 |
|
42 |
-
embed_file="embeddings.safetensors"
|
43 |
-
|
44 |
-
device=torch.device("cuda")
|
45 |
-
|
46 |
print("read in words from dictionary now",file=sys.stderr)
|
47 |
with open("dictionary","r") as f:
|
48 |
tokendict = f.readlines()
|
|
|
21 |
processor=None
|
22 |
model=None
|
23 |
|
24 |
+
if len(sys.argv) == 2:
|
25 |
+
embed_file=sys.argv[1]
|
26 |
+
else:
|
27 |
+
print("You have to give name of embeddings file")
|
28 |
+
sys.exit(1)
|
29 |
+
|
30 |
device=torch.device("cuda")
|
31 |
|
32 |
|
|
|
45 |
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
48 |
print("read in words from dictionary now",file=sys.stderr)
|
49 |
with open("dictionary","r") as f:
|
50 |
tokendict = f.readlines()
|
calculate-distancesXL.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
Plan:
|
5 |
+
Read in "dictionary" for list of words
|
6 |
+
Read in pre-calculated "proper" embedding for each word from safetensor file
|
7 |
+
Prompt user for a word from the list
|
8 |
+
Generate a tensor array of distance to all the other known words
|
9 |
+
Print out the 20 closest ones
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
import sys
|
14 |
+
import torch
|
15 |
+
from safetensors import safe_open
|
16 |
+
|
17 |
+
from transformers import CLIPProcessor,CLIPModel, CLIPTextModelWithProjection
|
18 |
+
|
19 |
+
processor=None
|
20 |
+
tmodel2=None
|
21 |
+
model_path2=None
|
22 |
+
model_config2=None
|
23 |
+
|
24 |
+
if len(sys.argv) == 4:
|
25 |
+
model_path2=sys.argv[1]
|
26 |
+
model_config2=sys.argv[2]
|
27 |
+
embed_file=sys.argv[3]
|
28 |
+
else:
|
29 |
+
print("You have to give name of textencoder modelfile,config file, and embeddings file")
|
30 |
+
sys.exit(1)
|
31 |
+
|
32 |
+
device=torch.device("cuda")
|
33 |
+
|
34 |
+
|
35 |
+
def init():
|
36 |
+
global tmodel2,processor
|
37 |
+
# yes, oddly they all use the same tokenizer, basically
|
38 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
39 |
+
|
40 |
+
print("loading",model_path)
|
41 |
+
tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True)
|
42 |
+
tmodel2.to(device)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
print("read in words from dictionary now",file=sys.stderr)
|
47 |
+
with open("dictionary","r") as f:
|
48 |
+
tokendict = f.readlines()
|
49 |
+
wordlist = [token.strip() for token in tokendict] # Remove trailing newlines
|
50 |
+
print(len(wordlist),"lines read")
|
51 |
+
|
52 |
+
print("read in embeddings now",file=sys.stderr)
|
53 |
+
model = safe_open(embed_file,framework="pt",device="cuda")
|
54 |
+
embs=model.get_tensor("embeddings")
|
55 |
+
embs.to(device)
|
56 |
+
print("Shape of loaded embeds =",embs.shape)
|
57 |
+
|
58 |
+
def standard_embed_calc(text):
|
59 |
+
global processor,tmodel2
|
60 |
+
inputs = processor(text=text, return_tensors="pt")
|
61 |
+
inputs.to(device)
|
62 |
+
|
63 |
+
with torch.no_grad():
|
64 |
+
outputs = tmodel2(**inputs)
|
65 |
+
embeddings = outputs.text_embeds
|
66 |
+
return embeddings[0]
|
67 |
+
|
68 |
+
|
69 |
+
def print_distances(targetemb):
|
70 |
+
targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2)
|
71 |
+
|
72 |
+
print("shape of distances...",targetdistances.shape)
|
73 |
+
|
74 |
+
smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False)
|
75 |
+
|
76 |
+
smallest_distances=smallest_distances.tolist()
|
77 |
+
smallest_indices=smallest_indices.tolist()
|
78 |
+
for d,i in zip(smallest_distances,smallest_indices):
|
79 |
+
print(wordlist[i],"(",d,")")
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
# Find 10 closest tokens to targetword.
|
84 |
+
# Will include the word itself
|
85 |
+
def find_closest(targetword):
|
86 |
+
try:
|
87 |
+
targetindex=wordlist.index(targetword)
|
88 |
+
targetemb=embs[targetindex]
|
89 |
+
print_distances(targetemb)
|
90 |
+
return
|
91 |
+
except ValueError:
|
92 |
+
print(targetword,"not found in cache")
|
93 |
+
|
94 |
+
|
95 |
+
print("Now doing with full calc embed")
|
96 |
+
targetemb=standard_embed_calc(targetword)
|
97 |
+
print_distances(targetemb)
|
98 |
+
|
99 |
+
|
100 |
+
while True:
|
101 |
+
input_text=input("Input a word now:")
|
102 |
+
find_closest(input_text)
|