Upload graph-embeddings-XL.py
Browse files- graph-embeddings-XL.py +84 -0
graph-embeddings-XL.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/env python
|
2 |
+
|
3 |
+
"""
|
4 |
+
(Similar to graph-embeddings, but for SDXL)
|
5 |
+
|
6 |
+
This program requires two files as arguments:
|
7 |
+
A text encoder model (SDXL style), and matching config.json
|
8 |
+
|
9 |
+
You can get the fancy SDXL "vit-bigg" based text encoding model and config, from
|
10 |
+
https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/text_encoder_2
|
11 |
+
Take the config.json and one of the .safetensors files
|
12 |
+
|
13 |
+
The sd1.5 encoding model resides at
|
14 |
+
https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main/text_encoder
|
15 |
+
|
16 |
+
Once it has read those files in, it asks for 1-2 text prompts, and then graphs them.
|
17 |
+
(and pops up a prog to display the output)
|
18 |
+
|
19 |
+
"""
|
20 |
+
import sys
|
21 |
+
import torch
|
22 |
+
from transformers import CLIPProcessor, CLIPTextModel
|
23 |
+
|
24 |
+
if len(sys.argv) <3:
|
25 |
+
print("Error: require clipmodel file and config file as arguments")
|
26 |
+
exit(1)
|
27 |
+
|
28 |
+
# 1. Load the pretrained model
|
29 |
+
# Note that it doesnt like a leading "/" in the name!!
|
30 |
+
#
|
31 |
+
model_path = sys.argv[1]
|
32 |
+
model_config = sys.argv[2]
|
33 |
+
print("loading",model_path)
|
34 |
+
model = CLIPTextModel.from_pretrained(
|
35 |
+
model_path,config=model_config,local_files_only=True,use_safetensors=True)
|
36 |
+
|
37 |
+
|
38 |
+
# This is the tokenizer for sd1 and sdxl
|
39 |
+
CLIPname = "openai/clip-vit-large-patch14"
|
40 |
+
print("getting processor",CLIPname)
|
41 |
+
processor = CLIPProcessor.from_pretrained(CLIPname)
|
42 |
+
|
43 |
+
def embed_from_text(text):
|
44 |
+
print("getting tokens for",text)
|
45 |
+
inputs = processor(text=text, return_tensors="pt")
|
46 |
+
outputs = model(**inputs)
|
47 |
+
embeddings = outputs.pooler_output
|
48 |
+
return embeddings
|
49 |
+
|
50 |
+
|
51 |
+
import PyQt5
|
52 |
+
import matplotlib
|
53 |
+
matplotlib.use('QT5Agg') # Set the backend to TkAgg
|
54 |
+
|
55 |
+
import matplotlib.pyplot as plt
|
56 |
+
|
57 |
+
|
58 |
+
fig, ax = plt.subplots()
|
59 |
+
|
60 |
+
|
61 |
+
text1 = input("First prompt: ")
|
62 |
+
text2 = input("Second prompt(or leave blank): ")
|
63 |
+
|
64 |
+
|
65 |
+
emb1 = embed_from_text(text1)
|
66 |
+
print("shape of emb1:",emb1.shape)
|
67 |
+
|
68 |
+
graph1=emb1[0].tolist()
|
69 |
+
ax.plot(graph1, label=text1[:20])
|
70 |
+
|
71 |
+
if len(text2) >0:
|
72 |
+
emb2 = embed_from_text(text2)
|
73 |
+
graph2=emb2[0].tolist()
|
74 |
+
ax.plot(graph2, label=text2[:20])
|
75 |
+
|
76 |
+
# Add labels, title, and legend
|
77 |
+
#ax.set_xlabel('Index')
|
78 |
+
ax.set_ylabel('Values')
|
79 |
+
ax.set_title(f"Graph of Embeddings in {model_path}")
|
80 |
+
ax.legend()
|
81 |
+
|
82 |
+
# Display the graph
|
83 |
+
print("Pulling up the graph")
|
84 |
+
plt.show()
|