ppbrown commited on
Commit
4df5f4d
1 Parent(s): 195f981

Xl version of generate-allid-embeddings.py

Browse files
Files changed (1) hide show
  1. generate-allid-embeddingsXL.py +108 -0
generate-allid-embeddingsXL.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/env python
2
+
3
+ """
4
+ Take a CLIPTextModel compatible text encoder.
5
+ Go through the official range of tokens IDs (0-49405)
6
+ Generate the official "embedding" tensor for each one.
7
+ Save the result set to "temp.allids.safetensors"
8
+
9
+ Defaults to loading openai/clip-vit-large-patch14 from huggingface hub.
10
+ However, can take optional pair of arguments to a .safetensor model, and config file
11
+ RULES of the loader:
12
+ 1. the model file must appear to be either in current directory or one down. So,
13
+ badpath1=some/directory/tree/file.here
14
+ badpath2=/absolutepath
15
+ 2. yes, you MUST have a matching config.json file
16
+ 3. if you have no alternative, you can get away with using pytorch_model.bin
17
+
18
+ Sample location for such things that you can download:
19
+ https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/
20
+ If there is a .safetensors AND a .bin file, ignore the .bin file
21
+
22
+ You can also convert a singlefile model, such as is downloaded from civitai,
23
+ by using the utility at
24
+ https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py
25
+ Args should look like
26
+ convert_original_stable_diffusion_to_diffusers.py --checkpoint_file somemodel.safetensors \
27
+ --dump_path extractdir --to_safetensors --from_safetensors
28
+
29
+ """
30
+
31
+
32
+ import sys
33
+ import json
34
+ import torch
35
+ from safetensors.torch import save_file
36
+ from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection
37
+
38
+ processor=None
39
+
40
+
41
+ tmodel2=None
42
+ model_path2=None
43
+ model_config2=None
44
+
45
+ if len(sys.argv) == 3:
46
+ model_path2=sys.argv[1]
47
+ model_config2=sys.argv[2]
48
+ else:
49
+ print("You have to give name of modelfile and config file")
50
+ sys.exit(1)
51
+
52
+ device=torch.device("cuda")
53
+
54
+
55
+
56
+ def initXLCLIPmodel(model_path,model_config):
57
+ global tmodel2,processor
58
+ # yes, oddly they all uses the same one, basically
59
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
60
+
61
+ print("loading",model_path)
62
+ tmodel2 = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True)
63
+ tmodel2.to(device)
64
+
65
+
66
+ def embed_from_text2(text):
67
+ global processor,tmodel2
68
+ inputs = processor(text=text, return_tensors="pt")
69
+ inputs.to(device)
70
+
71
+ print("getting embeddings2")
72
+ outputs = tmodel2(**inputs)
73
+ embeddings = outputs.text_embeds
74
+ return embeddings
75
+
76
+
77
+ # "inputs" == magic pre-embedding format
78
+ def embed_from_inputs(inputs):
79
+ global processor,tmodel2
80
+ with torch.no_grad():
81
+ outputs = tmodel2(**inputs)
82
+ embedding = outputs.text_embeds
83
+
84
+ return embedding
85
+
86
+
87
+ initXLCLIPmodel(model_path2,model_config2)
88
+ inputs = processor(text="dummy", return_tensors="pt")
89
+ inputs.to(device)
90
+
91
+ all_embeddings = []
92
+
93
+ for id in range(49405):
94
+ inputs.input_ids[0][1]=id
95
+
96
+ emb=embed_from_inputs(inputs)
97
+ all_embeddings.append(emb)
98
+ if (id %100) ==0:
99
+ print(id)
100
+
101
+ embs = torch.cat(all_embeddings,dim=0)
102
+ print("Shape of result = ",embs.shape)
103
+
104
+ outputfile="cliptextmodel.tempXL.allids.safetensors"
105
+ print(f"Saving the calculatiuons to {outputfile}...")
106
+ save_file({"embeddings": embs}, outputfile)
107
+
108
+