#!/bin/env python """ Take a CLIPTextModel compatible text encoder. Go through the official range of tokens IDs (0-49405) Generate the official "embedding" tensor for each one. Save the result set to "temp.allids.safetensors" Defaults to loading openai/clip-vit-large-patch14 from huggingface hub. However, can take optional pair of arguments to a .safetensor model, and config file RULES of the loader: 1. the model file must appear to be either in current directory or one down. So, badpath1=some/directory/tree/file.here badpath2=/absolutepath 2. yes, you MUST have a matching config.json file 3. if you have no alternative, you can get away with using pytorch_model.bin Sample location for such things that you can download: https://huggingface.co/stablediffusionapi/edge-of-realism/tree/main/text_encoder/ If there is a .safetensors AND a .bin file, ignore the .bin file You can also convert a singlefile model, such as is downloaded from civitai, by using the utility at https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py Args should look like convert_original_stable_diffusion_to_diffusers.py --checkpoint_file somemodel.safetensors \ --dump_path extractdir --to_safetensors --from_safetensors """ import sys import json import torch from safetensors.torch import save_file from transformers import CLIPProcessor,CLIPModel,CLIPTextModel clipsrc="openai/clip-vit-large-patch14" processor=None model=None encfile=None configfile=None if len(sys.argv) == 3: encfile=sys.argv[1] configfile=sys.argv[2] device=torch.device("cuda") def init(): global processor global model global encfile global configfile # Load the processor and model print("loading processor from "+clipsrc,file=sys.stderr) processor = CLIPProcessor.from_pretrained(clipsrc) print("done",file=sys.stderr) # originally done this way. But its not the right one to use #print("loading model from "+clipsrc,file=sys.stderr) #model = CLIPModel.from_pretrained(clipsrc) #print("done",file=sys.stderr) if encfile != None: print("loading model from "+encfile,file=sys.stderr) model = CLIPTextModel.from_pretrained( encfile,config=configfile,local_files_only=True,use_safetensors=True ) else: print("loading model from "+clipsrc,file=sys.stderr) model = CLIPTextModel.from_pretrained(clipsrc) print("done",file=sys.stderr) model = model.to(device) # "inputs" == magic pre-embedding format def embed_from_inputs(inputs): with torch.no_grad(): # This way is for CLIPModel #text_features = model.get_text_features(**inputs) #embedding = text_features[0] outputs = model(**inputs) embeddings = outputs.pooler_output embedding = embeddings return embedding init() inputs = processor(text="dummy", return_tensors="pt") inputs.to(device) all_embeddings = [] for id in range(49405): inputs.input_ids[0][1]=id emb=embed_from_inputs(inputs) all_embeddings.append(emb) if (id %100) ==0: print(id) embs = torch.cat(all_embeddings,dim=0) print("Shape of result = ",embs.shape) outputfile="cliptextmodel.temp.allids.safetensors" print(f"Saving the calculatiuons to {outputfile}...") save_file({"embeddings": embs}, outputfile)