init
Browse files- .gitattributes +2 -0
- .gitignore +1 -0
- README.md +70 -0
- data/train.jsonl +3 -0
- data/valid.jsonl +3 -0
- process.py +103 -0
- semeval2012_relational_similarity.py +81 -0
.gitattributes
CHANGED
@@ -52,3 +52,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
data/train.jsonl filter=lfs diff=lfs merge=lfs -text
|
56 |
+
data/valid.jsonl filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
cache
|
README.md
CHANGED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license:
|
5 |
+
- other
|
6 |
+
multilinguality:
|
7 |
+
- monolingual
|
8 |
+
pretty_name: SemEval2012 task 2 Relational Similarity
|
9 |
+
---
|
10 |
+
# Dataset Card for "relbert/semeval2012_relational_similarity"
|
11 |
+
## Dataset Description
|
12 |
+
- **Repository:** [RelBERT](https://github.com/asahi417/relbert)
|
13 |
+
- **Paper:** [https://aclanthology.org/S12-1047/](https://aclanthology.org/S12-1047/)
|
14 |
+
- **Dataset:** SemEval2012: Relational Similarity
|
15 |
+
|
16 |
+
### Dataset Summary
|
17 |
+
Relational similarity dataset from [SemEval2012 task 2](https://aclanthology.org/S12-1047/), compiled to fine-tune [RelBERT](https://github.com/asahi417/relbert) model.
|
18 |
+
The dataset contains a list of positive and negative word pair from 89 pre-defined relations.
|
19 |
+
The relation types are constructed on top of following 10 parent relation types.
|
20 |
+
```shell
|
21 |
+
{
|
22 |
+
1: "Class Inclusion", # Hypernym
|
23 |
+
2: "Part-Whole", # Meronym, Substance Meronym
|
24 |
+
3: "Similar", # Synonym, Co-hypornym
|
25 |
+
4: "Contrast", # Antonym
|
26 |
+
5: "Attribute", # Attribute, Event
|
27 |
+
6: "Non Attribute",
|
28 |
+
7: "Case Relation",
|
29 |
+
8: "Cause-Purpose",
|
30 |
+
9: "Space-Time",
|
31 |
+
10: "Representation"
|
32 |
+
}
|
33 |
+
```
|
34 |
+
Each of the parent relation is further grouped into child relation types where the definition can be found [here](https://drive.google.com/file/d/0BzcZKTSeYL8VenY0QkVpZVpxYnc/view?resourcekey=0-ZP-UARfJj39PcLroibHPHw).
|
35 |
+
|
36 |
+
|
37 |
+
## Dataset Structure
|
38 |
+
### Data Instances
|
39 |
+
An example of `train` looks as follows.
|
40 |
+
```
|
41 |
+
{
|
42 |
+
'relation_type': '8d',
|
43 |
+
'positives': [ [ "breathe", "live" ], [ "study", "learn" ], [ "speak", "communicate" ], ... ]
|
44 |
+
'negatives': [ [ "starving", "hungry" ], [ "clean", "bathe" ], [ "hungry", "starving" ], ... ]
|
45 |
+
}
|
46 |
+
```
|
47 |
+
|
48 |
+
### Data Splits
|
49 |
+
| name |train|validation|
|
50 |
+
|---------|----:|---------:|
|
51 |
+
|semeval2012_relational_similarity| 89 | 89|
|
52 |
+
|
53 |
+
|
54 |
+
### Citation Information
|
55 |
+
```
|
56 |
+
@inproceedings{jurgens-etal-2012-semeval,
|
57 |
+
title = "{S}em{E}val-2012 Task 2: Measuring Degrees of Relational Similarity",
|
58 |
+
author = "Jurgens, David and
|
59 |
+
Mohammad, Saif and
|
60 |
+
Turney, Peter and
|
61 |
+
Holyoak, Keith",
|
62 |
+
booktitle = "*{SEM} 2012: The First Joint Conference on Lexical and Computational Semantics {--} Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation ({S}em{E}val 2012)",
|
63 |
+
month = "7-8 " # jun,
|
64 |
+
year = "2012",
|
65 |
+
address = "Montr{\'e}al, Canada",
|
66 |
+
publisher = "Association for Computational Linguistics",
|
67 |
+
url = "https://aclanthology.org/S12-1047",
|
68 |
+
pages = "356--364",
|
69 |
+
}
|
70 |
+
```
|
data/train.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82446ec2cb00f4d66ad37b699a404b5980d366488e49b23a9f55e3dcc3f604af
|
3 |
+
size 32277
|
data/valid.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7093b17813ae66c8206d9dcf1a6757376db8811956ee350ea1669a4b2313725b
|
3 |
+
size 11205
|
process.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import tarfile
|
4 |
+
import zipfile
|
5 |
+
import gzip
|
6 |
+
import requests
|
7 |
+
import gdown
|
8 |
+
from glob import glob
|
9 |
+
|
10 |
+
|
11 |
+
def wget(url, cache_dir: str = './cache', gdrive_filename: str = None):
|
12 |
+
""" wget and uncompress data_iterator """
|
13 |
+
path = _wget(url, cache_dir, gdrive_filename=gdrive_filename)
|
14 |
+
if path.endswith('.tar.gz') or path.endswith('.tgz') or path.endswith('.tar'):
|
15 |
+
if path.endswith('.tar'):
|
16 |
+
tar = tarfile.open(path)
|
17 |
+
else:
|
18 |
+
tar = tarfile.open(path, "r:gz")
|
19 |
+
tar.extractall(cache_dir)
|
20 |
+
tar.close()
|
21 |
+
os.remove(path)
|
22 |
+
elif path.endswith('.zip'):
|
23 |
+
with zipfile.ZipFile(path, 'r') as zip_ref:
|
24 |
+
zip_ref.extractall(cache_dir)
|
25 |
+
os.remove(path)
|
26 |
+
elif path.endswith('.gz'):
|
27 |
+
with gzip.open(path, 'rb') as f:
|
28 |
+
with open(path.replace('.gz', ''), 'wb') as f_write:
|
29 |
+
f_write.write(f.read())
|
30 |
+
os.remove(path)
|
31 |
+
|
32 |
+
|
33 |
+
def _wget(url: str, cache_dir, gdrive_filename: str = None):
|
34 |
+
""" get data from web """
|
35 |
+
os.makedirs(cache_dir, exist_ok=True)
|
36 |
+
if url.startswith('https://drive.google.com'):
|
37 |
+
assert gdrive_filename is not None, 'please provide fileaname for gdrive download'
|
38 |
+
return gdown.download(url, f'{cache_dir}/{gdrive_filename}', quiet=False)
|
39 |
+
filename = os.path.basename(url)
|
40 |
+
with open(f'{cache_dir}/{filename}', "wb") as f:
|
41 |
+
r = requests.get(url)
|
42 |
+
f.write(r.content)
|
43 |
+
return f'{cache_dir}/{filename}'
|
44 |
+
|
45 |
+
|
46 |
+
def get_data(n_sample: int = 10, v_rate: float = 0.2, n_sample_max: int = 10):
|
47 |
+
assert n_sample <= n_sample_max
|
48 |
+
cache_dir = 'cache'
|
49 |
+
os.makedirs(cache_dir, exist_ok=True)
|
50 |
+
|
51 |
+
path_answer = f'{cache_dir}/Phase2Answers'
|
52 |
+
path_scale = f'{cache_dir}/Phase2AnswersScaled'
|
53 |
+
url = 'https://drive.google.com/u/0/uc?id=0BzcZKTSeYL8VYWtHVmxUR3FyUmc&export=download'
|
54 |
+
filename = 'SemEval-2012-Platinum-Ratings.tar.gz'
|
55 |
+
if not (os.path.exists(path_scale) and os.path.exists(path_answer)):
|
56 |
+
wget(url, gdrive_filename=filename, cache_dir=cache_dir)
|
57 |
+
files_answer = [os.path.basename(i) for i in glob(f'{path_answer}/*.txt')]
|
58 |
+
files_scale = [os.path.basename(i) for i in glob(f'{path_scale}/*.txt')]
|
59 |
+
assert files_answer == files_scale, f'files are not matched: {files_scale} vs {files_answer}'
|
60 |
+
all_positive_v = {}
|
61 |
+
all_negative_v = {}
|
62 |
+
all_positive_t = {}
|
63 |
+
all_negative_t = {}
|
64 |
+
for i in files_scale:
|
65 |
+
relation_id = i.split('-')[-1].replace('.txt', '')
|
66 |
+
with open(f'{path_answer}/{i}', 'r') as f:
|
67 |
+
lines_answer = [l.replace('"', '').split('\t') for l in f.read().split('\n') if not l.startswith('#') and len(l)]
|
68 |
+
relation_type = list(set(list(zip(*lines_answer))[-1]))
|
69 |
+
assert len(relation_type) == 1, relation_type
|
70 |
+
with open(f'{path_scale}/{i}', 'r') as f:
|
71 |
+
lines_scale = [[float(l[:5]), l[6:].replace('"', '')] for l in f.read().split('\n')
|
72 |
+
if not l.startswith('#') and len(l)]
|
73 |
+
lines_scale = sorted(lines_scale, key=lambda x: x[0])
|
74 |
+
_negative = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] < 0, lines_scale[:n_sample_max]))))[1]]
|
75 |
+
_positive = [tuple(i.split(':')) for i in list(zip(*list(filter(lambda x: x[0] > 0, lines_scale[-n_sample_max:]))))[1]]
|
76 |
+
v_negative = _negative[::int(len(_negative) * (1 - v_rate))]
|
77 |
+
v_positive = _positive[::int(len(_positive) * (1 - v_rate))]
|
78 |
+
t_negative = [i for i in _negative if i not in v_negative]
|
79 |
+
t_positive = [i for i in _positive if i not in v_positive]
|
80 |
+
|
81 |
+
all_negative_v[relation_id] = v_negative
|
82 |
+
all_positive_v[relation_id] = v_positive
|
83 |
+
all_negative_t[relation_id] = t_negative[:n_sample]
|
84 |
+
all_positive_t[relation_id] = t_positive[-n_sample:]
|
85 |
+
|
86 |
+
return (all_positive_t, all_negative_t), (all_positive_v, all_negative_v)
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == '__main__':
|
90 |
+
(all_positive_t, all_negative_t), (all_positive_v, all_negative_v) = get_data(n_sample=10, v_rate=0.2, n_sample_max=10)
|
91 |
+
os.makedirs('data', exist_ok=True)
|
92 |
+
|
93 |
+
keys = all_positive_t.keys()
|
94 |
+
with open("data/train.jsonl", "w") as f:
|
95 |
+
for k in sorted(keys):
|
96 |
+
f.write(json.dumps({"relation_type": k, "positives": all_positive_t[k], "negatives": all_negative_t[k]}))
|
97 |
+
f.write("\n")
|
98 |
+
|
99 |
+
keys = all_positive_v.keys()
|
100 |
+
with open("data/valid.jsonl", "w") as f:
|
101 |
+
for k in sorted(keys):
|
102 |
+
f.write(json.dumps({"relation_type": k, "positives": all_positive_v[k], "negatives": all_negative_v[k]}))
|
103 |
+
f.write("\n")
|
semeval2012_relational_similarity.py
CHANGED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
_DESCRIPTION = """[SemEVAL 2012 task 2: Relational Similarity](https://aclanthology.org/S12-1047/)"""
|
7 |
+
_NAME = "semeval2012_relational_similarity"
|
8 |
+
_VERSION = "0.0.0"
|
9 |
+
_CITATION = """
|
10 |
+
@inproceedings{jurgens-etal-2012-semeval,
|
11 |
+
title = "{S}em{E}val-2012 Task 2: Measuring Degrees of Relational Similarity",
|
12 |
+
author = "Jurgens, David and
|
13 |
+
Mohammad, Saif and
|
14 |
+
Turney, Peter and
|
15 |
+
Holyoak, Keith",
|
16 |
+
booktitle = "*{SEM} 2012: The First Joint Conference on Lexical and Computational Semantics {--} Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation ({S}em{E}val 2012)",
|
17 |
+
month = "7-8 " # jun,
|
18 |
+
year = "2012",
|
19 |
+
address = "Montr{\'e}al, Canada",
|
20 |
+
publisher = "Association for Computational Linguistics",
|
21 |
+
url = "https://aclanthology.org/S12-1047",
|
22 |
+
pages = "356--364",
|
23 |
+
}
|
24 |
+
"""
|
25 |
+
|
26 |
+
_HOME_PAGE = "https://github.com/asahi417/relbert"
|
27 |
+
_URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/dataset'
|
28 |
+
_URLS = {
|
29 |
+
str(datasets.Split.TRAIN): [f'{_URL}/train.jsonl'],
|
30 |
+
str(datasets.Split.VALIDATION): [f'{_URL}/valid.jsonl'],
|
31 |
+
}
|
32 |
+
|
33 |
+
|
34 |
+
class SemEVAL2012RelationalSimilarityConfig(datasets.BuilderConfig):
|
35 |
+
"""BuilderConfig"""
|
36 |
+
|
37 |
+
def __init__(self, **kwargs):
|
38 |
+
"""BuilderConfig.
|
39 |
+
Args:
|
40 |
+
**kwargs: keyword arguments forwarded to super.
|
41 |
+
"""
|
42 |
+
super(SemEVAL2012RelationalSimilarityConfig, self).__init__(**kwargs)
|
43 |
+
|
44 |
+
|
45 |
+
class SemEVAL2012RelationalSimilarity(datasets.GeneratorBasedBuilder):
|
46 |
+
"""Dataset."""
|
47 |
+
|
48 |
+
BUILDER_CONFIGS = [
|
49 |
+
SemEVAL2012RelationalSimilarityConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION)
|
50 |
+
]
|
51 |
+
|
52 |
+
def _split_generators(self, dl_manager):
|
53 |
+
downloaded_file = dl_manager.download_and_extract(_URLS)
|
54 |
+
return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
|
55 |
+
for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION]]
|
56 |
+
|
57 |
+
def _generate_examples(self, filepaths):
|
58 |
+
_key = 0
|
59 |
+
for filepath in filepaths:
|
60 |
+
logger.info(f"generating examples from = {filepath}")
|
61 |
+
with open(filepath, encoding="utf-8") as f:
|
62 |
+
_list = [i for i in f.read().split('\n') if len(i) > 0]
|
63 |
+
for i in _list:
|
64 |
+
data = json.loads(i)
|
65 |
+
yield _key, data
|
66 |
+
_key += 1
|
67 |
+
|
68 |
+
def _info(self):
|
69 |
+
return datasets.DatasetInfo(
|
70 |
+
description=_DESCRIPTION,
|
71 |
+
features=datasets.Features(
|
72 |
+
{
|
73 |
+
"relation_type": datasets.Value("string"),
|
74 |
+
"positives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
75 |
+
"negatives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
|
76 |
+
}
|
77 |
+
),
|
78 |
+
supervised_keys=None,
|
79 |
+
homepage=_HOME_PAGE,
|
80 |
+
citation=_CITATION,
|
81 |
+
)
|