|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Scientific Lay Summarization Datasets.""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@misc{Goldsack_2022, |
|
doi = {10.48550/ARXIV.2210.09932}, |
|
url = {https://arxiv.org/abs/2210.09932}, |
|
author = {Goldsack, Tomas and Zhang, Zhihao and Lin, Chenghua and Scarton, Carolina}, |
|
title = {Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature |
|
](https://arxiv.org/abs/2210.09932)". |
|
Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/anlaysis on the content of each dataset are provided in the paper. |
|
|
|
Both "elife" and "plos" have 6 features: |
|
- "article": the body of the document (including the abstract), sections seperated by "/n". |
|
- "section_headings": the title of each section, seperated by "/n". |
|
- "keywords": keywords describing the topic of the article, seperated by "/n". |
|
- "title" : the title of the article. |
|
- "year" : the year the article was published. |
|
- "summary": the lay summary of the document. |
|
""" |
|
|
|
_DOCUMENT = "article" |
|
_SUMMARY = "summary" |
|
|
|
_URLS = { |
|
"plos": "https://drive.usercontent.google.com/download?id=1lZ6PCAtXvmGjRZyp3vQQCEgO_yerH62Q&export=download&authuser=1&confirm=t&uuid=dc63dea1-0814-450f-9234-8bff2b9d1a94&at=APZUnTUfgwJ5Tdiin4ppFPPLWhMX%3A1716450460802", |
|
"elife": "https://drive.usercontent.google.com/download?id=1WKW8BAqluOlXrpy1B9mV3j3CtAK3JdnE&export=download&authuser=1&confirm=t&uuid=1332bc11-7cbf-4c4d-8561-85621060f397&at=APZUnTVLLKAGVSBpQlYKojrJ57xb%3A1716450570186", |
|
} |
|
|
|
|
|
class ScientificLaySummarisationConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Scientific Papers.""" |
|
|
|
def __init__(self, filename=None, **kwargs): |
|
"""BuilderConfig for ScientificPapers |
|
Args: |
|
filename: filename of different configs for the dataset. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ScientificLaySummarisationConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.filename = filename |
|
|
|
|
|
class ScientificLaySummarisation(datasets.GeneratorBasedBuilder): |
|
"""Scientific Papers.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ScientificLaySummarisationConfig(name="plos", description="Documents and lay summaries from PLOS journals."), |
|
ScientificLaySummarisationConfig(name="elife", description="Documents and lay summaries from the eLife journal."), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_DOCUMENT: datasets.Value("string"), |
|
_SUMMARY: datasets.Value("string"), |
|
"section_headings": datasets.Value("string"), |
|
"keywords": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_paths = dl_manager.download_and_extract(_URLS) |
|
path = dl_paths[self.config.name] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": os.path.join(path, "train.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"path": os.path.join(path, "val.json")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": os.path.join(path, "test.json")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
with open(path, encoding="utf-8") as f: |
|
f = json.loads(f.read()) |
|
for d in f: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sections = [" ".join(s).strip() for s in d["sections"]] |
|
abstract = " ".join(d['abstract']).strip() |
|
full_doc = [abstract] + sections |
|
summary = " ".join(d["summary"]).strip() |
|
|
|
yield d["id"], { |
|
_DOCUMENT: "\n".join(full_doc), |
|
_SUMMARY: summary, |
|
"section_headings": "\n".join(["Abstract"] + d["headings"]), |
|
"keywords": "\n".join(d["keywords"]), |
|
"year": d["year"], |
|
"title": d["title"] |
|
} |
|
|
|
|