Datasets:
updated load dataset file
Browse files
scientific_lay_summarization.py
CHANGED
@@ -39,6 +39,14 @@ _DESCRIPTION = """
|
|
39 |
This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature
|
40 |
](https://arxiv.org/abs/2210.09932)".
|
41 |
Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/anlaysis on the content of each dataset are provided in the paper.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
"""
|
43 |
|
44 |
_DOCUMENT = "article"
|
@@ -59,7 +67,7 @@ class ScientificLaySummarisationConfig(datasets.BuilderConfig):
|
|
59 |
filename: filename of different configs for the dataset.
|
60 |
**kwargs: keyword arguments forwarded to super.
|
61 |
"""
|
62 |
-
super(ScientificLaySummarisationConfig, self).__init__(version=datasets.Version("1.0"), **kwargs)
|
63 |
self.filename = filename
|
64 |
|
65 |
|
@@ -78,7 +86,7 @@ class ScientificLaySummarisation(datasets.GeneratorBasedBuilder):
|
|
78 |
{
|
79 |
_DOCUMENT: datasets.Value("string"),
|
80 |
_SUMMARY: datasets.Value("string"),
|
81 |
-
"
|
82 |
"keywords": datasets.Value("string"),
|
83 |
"year": datasets.Value("string"),
|
84 |
"title": datasets.Value("string"),
|
@@ -117,19 +125,22 @@ class ScientificLaySummarisation(datasets.GeneratorBasedBuilder):
|
|
117 |
# "id": str, # unique identifier
|
118 |
# "year": int, # year of publication
|
119 |
# "title": str, # title
|
120 |
-
# "sections": List[List[str]], # main text, divided in to sections
|
121 |
# "headings" List[str], # headings of each section
|
122 |
-
# "abstract": List[str], # abstract
|
123 |
-
# "summary": List[str], # lay summary
|
124 |
# "keywords": List[str] # keywords/topic of article
|
125 |
|
126 |
d = json.loads(line)
|
127 |
-
|
|
|
|
|
|
|
128 |
|
129 |
yield d["id"], {
|
130 |
-
_DOCUMENT: "\n".join([
|
131 |
_SUMMARY: summary,
|
132 |
-
"section_headings": "\n".join(d["headings"]),
|
133 |
"keywords": "\n".join(d["keywords"]),
|
134 |
"year": d["year"],
|
135 |
"title": d["title"]
|
|
|
39 |
This repository contains the PLOS and eLife datasets, introduced in the EMNLP 2022 paper "[Making Science Simple: Corpora for the Lay Summarisation of Scientific Literature
|
40 |
](https://arxiv.org/abs/2210.09932)".
|
41 |
Each dataset contains full biomedical research articles paired with expert-written lay summaries (i.e., non-technical summaries). PLOS articles are derived from various journals published by [the Public Library of Science (PLOS)](https://plos.org/), whereas eLife articles are derived from the [eLife](https://elifesciences.org/) journal. More details/anlaysis on the content of each dataset are provided in the paper.
|
42 |
+
|
43 |
+
Both "elife" and "plos" have 6 features:
|
44 |
+
- "article": the body of the document (including the abstract), sections seperated by "/n".
|
45 |
+
- "section_headings": the title of each section, seperated by "/n".
|
46 |
+
- "keywords": keywords describing the topic of the article, seperated by "/n".
|
47 |
+
- "title" : the title of the article.
|
48 |
+
- "year" : the year the article was published.
|
49 |
+
- "summary": the lay summary of the document.
|
50 |
"""
|
51 |
|
52 |
_DOCUMENT = "article"
|
|
|
67 |
filename: filename of different configs for the dataset.
|
68 |
**kwargs: keyword arguments forwarded to super.
|
69 |
"""
|
70 |
+
super(ScientificLaySummarisationConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
|
71 |
self.filename = filename
|
72 |
|
73 |
|
|
|
86 |
{
|
87 |
_DOCUMENT: datasets.Value("string"),
|
88 |
_SUMMARY: datasets.Value("string"),
|
89 |
+
"section_headings": datasets.Value("string"),
|
90 |
"keywords": datasets.Value("string"),
|
91 |
"year": datasets.Value("string"),
|
92 |
"title": datasets.Value("string"),
|
|
|
125 |
# "id": str, # unique identifier
|
126 |
# "year": int, # year of publication
|
127 |
# "title": str, # title
|
128 |
+
# "sections": List[List[str]], # main text, divided in to sections/sentences
|
129 |
# "headings" List[str], # headings of each section
|
130 |
+
# "abstract": List[str], # abstract, in sentences
|
131 |
+
# "summary": List[str], # lay summary, in sentences
|
132 |
# "keywords": List[str] # keywords/topic of article
|
133 |
|
134 |
d = json.loads(line)
|
135 |
+
|
136 |
+
sections = [" ".join(s).strip() for s in d["sections"]]
|
137 |
+
abstract = " ".join(d['abstract']).strip()
|
138 |
+
summary = " ".join(d["summary"]).strip()
|
139 |
|
140 |
yield d["id"], {
|
141 |
+
_DOCUMENT: "\n".join([[abstract] + sections]),
|
142 |
_SUMMARY: summary,
|
143 |
+
"section_headings": "\n".join(["Abstract"] + d["headings"]),
|
144 |
"keywords": "\n".join(d["keywords"]),
|
145 |
"year": d["year"],
|
146 |
"title": d["title"]
|