|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
import textwrap |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
import pandas as pd |
|
|
|
LANGUAGES = ['malay', 'hindi', 'japanese', 'german', |
|
'italian', 'english', 'portuguese', 'french', |
|
'spanish', 'chinese', 'indonesian', 'arabic' |
|
] |
|
|
|
|
|
class MultilingualSentimentsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Multilingual Sentiments""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
label_classes, |
|
train_url, |
|
valid_url, |
|
test_url, |
|
citation, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for Multilingual Sentiments. |
|
|
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the txt/csv/tsv file |
|
label_column: `string`, name of the column in the txt/csv/tsv file corresponding |
|
to the label |
|
label_classes: `list[string]`, the list of classes if the label is categorical |
|
train_url: `string`, url to train file from |
|
valid_url: `string`, url to valid file from |
|
test_url: `string`, url to test file from |
|
citation: `string`, citation for the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MultilingualSentimentsConfig, self).__init__( |
|
version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.train_url = train_url |
|
self.valid_url = valid_url |
|
self.test_url = test_url |
|
self.citation = citation |
|
|
|
|
|
class MultilingualSentiments(datasets.GeneratorBasedBuilder): |
|
"""Multilingual Sentiments benchmark""" |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
BUILDER_CONFIGS.append( |
|
MultilingualSentimentsConfig( |
|
name="all", |
|
description=textwrap.dedent( |
|
f"""\ |
|
All datasets.""" |
|
), |
|
text_features={"text": "text", "source": "source", "language": "language"}, |
|
label_classes=["positive", "neutral", "negative"], |
|
label_column="label", |
|
train_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/train.csv", |
|
valid_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/valid.csv", |
|
test_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/all/test.csv", |
|
citation=textwrap.dedent( |
|
f"""\ |
|
All citation""" |
|
), |
|
), |
|
) |
|
|
|
for lang in LANGUAGES: |
|
BUILDER_CONFIGS.append( |
|
MultilingualSentimentsConfig( |
|
name=lang, |
|
description=textwrap.dedent( |
|
f"""\ |
|
{lang} dataset.""" |
|
), |
|
text_features={"text": "text", "source": "source"}, |
|
label_classes=["positive", "neutral", "negative"], |
|
label_column="label", |
|
train_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/train.csv", |
|
valid_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/valid.csv", |
|
test_url=f"https://raw.githubusercontent.com/tyqiangz/multilingual-sentiment-datasets/main/data/{lang}/test.csv", |
|
citation=textwrap.dedent( |
|
f"""\ |
|
{lang} citation""" |
|
), |
|
), |
|
) |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value( |
|
"string") for text_feature in self.config.text_features} |
|
|
|
features["label"] = datasets.features.ClassLabel( |
|
names=self.config.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
citation=self.config.citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_path = dl_manager.download_and_extract(self.config.train_url) |
|
valid_path = dl_manager.download_and_extract(self.config.valid_url) |
|
test_path = dl_manager.download_and_extract(self.config.test_url) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ |
|
"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={ |
|
"filepath": valid_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={ |
|
"filepath": test_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
df = pd.read_csv(filepath) |
|
|
|
print('-'*100) |
|
print(df.head()) |
|
print('-'*100) |
|
|
|
for id_, row in df.iterrows(): |
|
if self.config.name != "all": |
|
text = row["text"] |
|
label = row["label"] |
|
source = row["source"] |
|
|
|
yield id_, {"text": text, "label": label, "source": source} |
|
|
|
else: |
|
text = row["text"] |
|
label = row["label"] |
|
source = row["source"] |
|
language = row["language"] |
|
|
|
yield id_, {"text": text, "label": label, "source": source, "language": language} |
|
|