Datasets:

ArXiv:
File size: 11,175 Bytes
ca4cec9
c892d20
ca4cec9
 
 
c892d20
ca4cec9
c892d20
 
ca4cec9
 
 
 
c892d20
ca4cec9
 
 
 
 
 
 
 
 
 
c892d20
ca4cec9
 
 
 
 
 
 
 
 
c892d20
ca4cec9
 
 
 
 
c892d20
 
ca4cec9
 
 
 
c892d20
 
ca4cec9
 
 
 
c892d20
ca4cec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c892d20
 
 
ca4cec9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c892d20
 
ca4cec9
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import copy
import dataclasses
from abc import ABCMeta
from copy import deepcopy
from typing import Any, final

_FIELDS = "__fields__"


@dataclasses.dataclass
class Field:
    """
    An alternative to dataclasses.dataclass decorator for a more flexible field definition.

    Attributes:
        default (Any, optional): Default value for the field. Defaults to None.
        name (str, optional): Name of the field. Defaults to None.
        type (type, optional): Type of the field. Defaults to None.
        default_factory (Any, optional): A function that returns the default value. Defaults to None.
        final (bool, optional): A boolean indicating if the field is final (cannot be overridden). Defaults to False.
        abstract (bool, optional): A boolean indicating if the field is abstract (must be implemented by subclasses). Defaults to False.
        required (bool, optional): A boolean indicating if the field is required. Defaults to False.
        origin_cls (type, optional): The original class that defined the field. Defaults to None.
    """

    default: Any = None
    name: str = None
    type: type = None
    init: bool = True
    default_factory: Any = None
    final: bool = False
    abstract: bool = False
    required: bool = False
    origin_cls: type = None

    def get_default(self):
        if self.default_factory is not None:
            return self.default_factory()
        else:
            return self.default


@dataclasses.dataclass
class FinalField(Field):
    def __post_init__(self):
        self.final = True


@dataclasses.dataclass
class RequiredField(Field):
    def __post_init__(self):
        self.required = True


@dataclasses.dataclass
class AbstractField(Field):
    def __post_init__(self):
        self.abstract = True


class FinalFieldError(TypeError):
    pass


class RequiredFieldError(TypeError):
    pass


class AbstractFieldError(TypeError):
    pass


class TypeMismatchError(TypeError):
    pass


standart_variables = dir(object)


def is_possible_field(field_name, field_value):
    """
    Check if a name-value pair can potentially represent a field.

    Args:
        field_name (str): The name of the field.
        field_value: The value of the field.

    Returns:
        bool: True if the name-value pair can represent a field, False otherwise.
    """
    return field_name not in standart_variables and not field_name.startswith("__") and not callable(field_value)


def get_fields(cls, attrs):
    """
    Get the fields for a class based on its attributes.

    Args:
        cls (type): The class to get the fields for.
        attrs (dict): The attributes of the class.

    Returns:
        dict: A dictionary mapping field names to Field instances.
    """

    fields = {**getattr(cls, _FIELDS, {})}
    annotations = {**attrs.get("__annotations__", {})}

    for attr_name, attr_value in attrs.items():
        if attr_name not in annotations and is_possible_field(attr_name, attr_value):
            if attr_name in fields:
                if not isinstance(attr_value, fields[attr_name].type):
                    raise TypeMismatchError(
                        f"Type mismatch for field '{attr_name}' of class '{fields[attr_name].origin_cls}'. Expected {fields[attr_name].type}, got {type(attr_value)}"
                    )
                annotations[attr_name] = fields[attr_name].type

    for field_name, field_type in annotations.items():
        if field_name in fields and fields[field_name].final:
            raise FinalFieldError(
                f"Final field {field_name} defined in {fields[field_name].origin_cls} overridden in {cls}"
            )

        args = {
            "name": field_name,
            "type": field_type,
            "origin_cls": attrs["__qualname__"],
        }

        if field_name in attrs:
            field = attrs[field_name]
            if isinstance(field, Field):
                args = {**dataclasses.asdict(field), **args}
            elif isinstance(field, dataclasses.Field):
                args = {
                    "default": field.default,
                    "name": field.name,
                    "type": field.type,
                    "init": field.init,
                    "default_factory": field.default_factory,
                    **args,
                }
            else:
                args["default"] = field
        else:
            args["default"] = dataclasses.MISSING
            args["default_factory"] = None
            args["required"] = True

        field_instance = Field(**args)
        fields[field_name] = field_instance

    return fields


def is_dataclass(obj):
    """Returns True if obj is a dataclass or an instance of a
    dataclass."""
    cls = obj if isinstance(obj, type) else type(obj)
    return hasattr(cls, _FIELDS)


def class_fields(obj):
    all_fields = fields(obj)
    return [field for field in all_fields if field.origin_cls == obj.__class__.__qualname__]


def fields(cls):
    return list(getattr(cls, _FIELDS).values())


def fields_names(cls):
    return list(getattr(cls, _FIELDS).keys())


def final_fields(cls):
    return [field for field in fields(cls) if field.final]


def required_fields(cls):
    return [field for field in fields(cls) if field.required]


def abstract_fields(cls):
    return [field for field in fields(cls) if field.abstract]


def is_abstract_field(field):
    return field.abstract


def is_final_field(field):
    return field.final


def get_field_default(field):
    if field.default_factory is not None:
        return field.default_factory()
    else:
        return field.default


def asdict(obj):
    assert is_dataclass(obj), f"{obj} must be a dataclass, got {type(obj)} with bases {obj.__class__.__bases__}"
    return _asdict_inner(obj)


def _asdict_inner(obj):
    if is_dataclass(obj):
        result = {}
        for field in fields(obj):
            v = getattr(obj, field.name)
            result[field.name] = _asdict_inner(v)
        return result
    elif isinstance(obj, tuple) and hasattr(obj, "_fields"):  # named tuple
        return type(obj)(*[_asdict_inner(v) for v in obj])
    elif isinstance(obj, (list, tuple)):
        return type(obj)([_asdict_inner(v) for v in obj])
    elif isinstance(obj, dict):
        return type(obj)({_asdict_inner(k): _asdict_inner(v) for k, v in obj.items()})
    else:
        return copy.deepcopy(obj)


class DataclassMeta(ABCMeta):
    """
    Metaclass for Dataclass.
    Checks for final fields when a subclass is created.
    """

    @final
    def __init__(cls, name, bases, attrs):
        super().__init__(name, bases, attrs)
        setattr(cls, _FIELDS, get_fields(cls, attrs))


class Dataclass(metaclass=DataclassMeta):
    """
    Base class for data-like classes that provides additional functionality and control
    over Python's built-in @dataclasses.dataclass decorator. Other classes can inherit from
    this class to get the benefits of this implementation. As a base class, it ensures that
    all subclasses will automatically be data classes.

    The usage and field definitions are similar to Python's built-in @dataclasses.dataclass decorator.
    However, this implementation provides additional classes for defining "final", "required",
    and "abstract" fields.

    Key enhancements of this custom implementation:

    1. Automatic Data Class Creation: All subclasses automatically become data classes,
       without needing to use the @dataclasses.dataclass decorator.

    2. Field Immutability: Supports creation of "final" fields (using FinalField class) that
       cannot be overridden by subclasses. This functionality is not natively supported in
       Python or in the built-in dataclasses module.

    3. Required Fields: Supports creation of "required" fields (using RequiredField class) that
       must be provided when creating an instance of the class, adding a level of validation
       not present in the built-in dataclasses module.

    4. Abstract Fields: Supports creation of "abstract" fields (using AbstractField class) that
       must be overridden by any non-abstract subclass. This is similar to abstract methods in
       an abc.ABC class, but applied to fields.

    5. Type Checking: Performs type checking to ensure that if a field is redefined in a subclass,
       the type of the field remains consistent, adding static type checking not natively supported
       in Python.

    6. Error Definitions: Defines specific error types (FinalFieldError, RequiredFieldError,
       AbstractFieldError, TypeMismatchError) for providing detailed error information during debugging.

    7. MetaClass Usage: Uses a metaclass (DataclassMeta) for customization of class creation,
       allowing checks and alterations to be made at the time of class creation, providing more control.

    Example:
        ```
        class Parent(Dataclass):
            final_field: int = FinalField(1) # this field cannot be overridden
            required_field: str = RequiredField()
            also_required_field: float
            abstract_field: int = AbstractField()

        class Child(Parent):
            abstract_field = 3 # now once overridden, this is no longer abstract
            required_field = Field(name="required_field", default="provided", type=str)

        class Mixin(Dataclass):
            mixin_field = Field(name="mixin_field", default="mixin", type=str)

        class GrandChild(Child, Mixin):
            pass

        grand_child = GrandChild()
        print(grand_child.to_dict())
        ```

    """

    @final
    def __init__(self, *args, **kwargs):
        """
        Initialize fields based on kwargs.
        Checks for abstract fields when an instance is created.
        """
        init_fields = [field for field in fields(self) if field.init]
        for field, arg in zip(init_fields, args):
            kwargs[field.name] = arg

        for field in abstract_fields(self):
            raise AbstractFieldError(
                f"Abstract field '{field.name}' of class {field.origin_cls} not implemented in {self.__class__.__name__}"
            )

        for field in required_fields(self):
            if field.name not in kwargs:
                raise RequiredFieldError(
                    f"Required field '{field.name}' of class {field.origin_cls} not set in {self.__class__.__name__}"
                )

        for field in fields(self):
            if field.name in kwargs:
                setattr(self, field.name, kwargs[field.name])
            else:
                setattr(self, field.name, get_field_default(field))

        self.__post_init__()

    @property
    def __is_dataclass__(self) -> bool:
        return True

    def __post_init__(self):
        """
        Post initialization hook.
        """
        pass

    def to_dict(self):
        """
        Convert to dict.
        """
        return asdict(self)

    def __repr__(self) -> str:
        """
        String representation.
        """
        return f"{self.__class__.__name__}({', '.join([f'{field.name}={repr(getattr(self, field.name))}' for field in fields(self)])})"