Datasets:

ArXiv:
File size: 3,598 Bytes
e1acc28
15203ea
 
 
ca10b7a
 
 
 
 
88480b4
1b07110
ba31342
766a080
ca10b7a
3f0bfaf
15203ea
ca10b7a
1232c97
ca10b7a
15203ea
7ffcb05
1b07110
 
 
ca10b7a
 
 
 
1bfeb06
ca10b7a
ba31342
ca10b7a
 
15203ea
479ad81
1bfeb06
 
ca10b7a
15203ea
3f0bfaf
ca10b7a
1bfeb06
 
ca10b7a
 
 
1232c97
723d3ae
1bfeb06
15203ea
f1c2ac1
ca10b7a
1bfeb06
 
ca10b7a
b123d50
e1acc28
 
1bfeb06
 
ca10b7a
 
 
 
 
1bfeb06
 
ca10b7a
 
e1acc28
 
 
 
 
 
 
1bfeb06
 
 
bd95969
1bfeb06
 
 
 
 
 
 
bd95969
 
e1acc28
 
 
 
 
bd95969
e1acc28
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
from typing import Dict, Iterable, List

import evaluate

from .artifact import __file__ as _
from .blocks import __file__ as _
from .card import __file__ as _
from .catalog import __file__ as _
from .collections import __file__ as _
from .dataclass import __file__ as _
from .dataset_utils import __file__ as _
from .dict_utils import __file__ as _
from .eval_utils import __file__ as _
from .file_utils import __file__ as _
from .formats import __file__ as _
from .fusion import __file__ as _
from .generator_utils import __file__ as _
from .hf_utils import __file__ as _
from .instructions import __file__ as _
from .loaders import __file__ as _
from .logging_utils import __file__ as _
from .metric_utils import UNITXT_METRIC_SCHEMA
from .metric_utils import __file__ as _
from .metric_utils import _compute
from .metrics import __file__ as _
from .normalizers import __file__ as _
from .operator import __file__ as _
from .operators import __file__ as _
from .parsing_utils import __file__ as _
from .processors import __file__ as _
from .random_utils import __file__ as _
from .recipe import __file__ as _
from .register import __file__ as _
from .schema import __file__ as _
from .settings_utils import __file__ as _
from .settings_utils import get_constants
from .span_lableing_operators import __file__ as _
from .split_utils import __file__ as _
from .splitters import __file__ as _
from .standard import __file__ as _
from .stream import __file__ as _
from .struct_data_operators import __file__ as _
from .system_prompts import __file__ as _
from .task import __file__ as _
from .templates import __file__ as _
from .text_utils import __file__ as _
from .type_utils import __file__ as _
from .utils import __file__ as _
from .utils import is_package_installed
from .validate import __file__ as _
from .version import __file__ as _

constants = get_constants()


class Metric(evaluate.Metric):
    calc_confidence_intervals: bool = True

    VERSION = constants.version

    def _info(self):
        return evaluate.MetricInfo(
            description="_DESCRIPTION",
            citation="_CITATION",
            features=UNITXT_METRIC_SCHEMA,
            codebase_urls=[constants.codebase_url],
            reference_urls=[constants.website_url],
        )

    def _compute(
        self,
        predictions: List[str],
        references: Iterable,
        flatten: bool = False,
        split_name: str = "all",
    ):
        if is_package_installed("unitxt"):
            from unitxt.settings_utils import \
                get_constants as installed_get_constants

            installed_package_constants = installed_get_constants()
            if installed_package_constants.version != self.VERSION:
                raise ValueError(
                    f"Located installed unitxt version {installed_get_constants.version} that is different then unitxt metric version {self.VERSION}. Please make sure the installed version is identical to the dataset version."
                )

            from unitxt.metric_utils import _compute as _compute_installed

            return _compute_installed(
                predictions=predictions,
                references=references,
                flatten=flatten,
                split_name=split_name,
                calc_confidence_intervals=self.calc_confidence_intervals,
            )

        return _compute(
            predictions=predictions,
            references=references,
            flatten=flatten,
            split_name=split_name,
            calc_confidence_intervals=self.calc_confidence_intervals,
        )